Nothing
### summary function for geem object.
summary.geem <- function(object, ...) {
Coefs <- matrix(NA,nrow=length(object$beta),ncol=5)
Coefs[,1] <- c(object$beta)
naive <- is.character(object$var)
if(!naive && any(diag(object$var) < 0) ){
naive <- TRUE
warning("Some elements of robust variance estimate < 0. Reporting model based SE.")
}
Coefs[,2] <- sqrt(diag(object$naiv.var))
if(naive){Coefs[,3] <- rep(NA, length(object$beta))}else{Coefs[,3] <- sqrt(diag(object$var))}
if(naive){Coefs[,4] <- Coefs[,1]/Coefs[,2]}else{Coefs[,4] <- Coefs[,1]/Coefs[,3]}
Coefs[,5] <- round(2*pnorm(abs(Coefs[,4]), lower.tail=F), digits=8)
colnames(Coefs) <- c("Estimates","Model SE","Robust SE", "wald", "p")
summ <- list(beta = Coefs[,1], se.model = Coefs[,2], se.robust = Coefs[,3], wald.test = Coefs[,4], p = Coefs[,5],
alpha = object$alpha, corr = object$corr, phi = object$phi, niter = object$niter, clusz = object$clusz,
coefnames = object$coefnames, weights=object$weights, biggest.R.alpha = object$biggest.R.alpha)
class(summ) <- 'summary.geem'
return(summ)
}
### print function for summary.geem object
print.summary.geem <- function(x, ...){
Coefs <- matrix(0,nrow=length(x$coefnames),ncol=5)
rownames(Coefs) <- c(x$coefnames)
colnames(Coefs) <- c("Estimates","Model SE","Robust SE", "wald", "p")
Coefs[,1] <- x$beta
Coefs[,2] <- x$se.model
Coefs[,3] <- x$se.robust
Coefs[,4] <- x$wald.test
Coefs[,5] <- x$p
#print("Call: ", object$call, "\n")
print(signif(Coefs, digits=4))
if(!is.element(x$corr, c("independence", "ar1", "exchangeable"))){
if(dim(x$biggest.R.alpha)[1] > 4 ){
cat("\n Working Correlation[1:4,1:4]: \n")
print(as.matrix(round(x$biggest.R.alpha[1:4,1:4], digits=4)))
}else{
cat("\n Working Correlation: \n")
print(as.matrix(round(x$biggest.R.alpha, digits=4)))
}
}else{
cat("\n Estimated Correlation Parameter: ", signif(x$alpha, digits=4), "\n")
}
#cat("\n Est. Correlation: ", signif(x$alpha, digits=4), "\n")
cat(" Correlation Structure: ", x$corr, "\n")
cat(" Est. Scale Parameter: ", signif(x$phi, digits=4), "\n")
cat("\n Number of GEE iterations:", x$niter, "\n")
cat(" Number of Clusters: ", length(x$clusz), " Maximum Cluster Size: ", max(x$clusz), "\n")
cat(" Number of observations with nonzero weight: ", sum(x$weights != 0), "\n")
}
### print function for geem object
print.geem <- function(x, ...){
coefdf <- signif(data.frame(x$beta), digits=4)
rownames(coefdf) <- x$coefnames
colnames(coefdf) <- ""
print(x$call)
cat("\n", "Coefficients:", "\n")
print(t(coefdf))
cat("\n Scale Parameter: ", signif(x$phi, digits=4), "\n")
cat("\n Correlation Model: ", x$corr)
if(!is.element(x$corr, c("independence", "ar1", "exchangeable"))){
if(dim(x$biggest.R.alpha)[1] > 4 ){
cat("\n Working Correlation[1:4,1:4]: \n")
print(as.matrix(round(x$biggest.R.alpha[1:4,1:4], digits=4)))
}else{
cat("\n Working Correlation: \n")
print(as.matrix(round(x$biggest.R.alpha, digits=4)))
}
}else{
cat("\n Estimated Correlation Parameter: ", signif(x$alpha, digits=4), "\n")
}
cat("\n Number of clusters: ", length(x$clusz), " Maximum cluster size: ", max(x$clusz), "\n")
cat(" Number of observations with nonzero weight: ", sum(x$weights != 0), "\n")
}
#print.coef.geem <- function(x, ...){
# print(signif(x, 3))
#}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.