Nothing
#' Confidence Intervals for geelm objects
#'
#' Compute Wald confidence intervals for mean structure parameters of geelm object.
#'
#' @param object a fitted model object.
#'
#' @param parm specification of which parameters are to be given
#' confidence intervals, either a vector of numbers or a vector
#' of names. If missing, all parameters are considered.
#'
#' @param level the confidence level required.
#'
#' @param std.err Which standard error estimation method that should
#' be used for computing the confidence intervals. Only `san.se`
#' is supported for geelm objects but `jack`, `j1s` or `fij` may
#' be used for geeglm objects (if they have been estimated when
#' fitting the model).
#'
#' @param ... additional argument(s) for methods.
#'
#' @return A matrix (or vector) with columns giving lower and upper
#' confidence limits for each parameter.
#'
#' @export
confint.geelm <- function(object, parm = NULL, level = 0.95, std.err = "san.se", ...) {
betas <- object$coefficients
if (std.err %in% c("san.se", "sandwich")) {
v_betas <- object$geese$vbeta
} else if (std.err == "jack") {
v_betas <- object$geese$vbeta.ajs
} else if (std.err == "j1s") {
v_betas <- object$geese$vbeta.j1s
} else if (std.err == "fij") {
v_betas <- object$geese$vbeta.fij
}
se_betas <- sqrt(diag(v_betas))
lwr_p <- (1 - level)/2
upr_p <- 1 - lwr_p
qn <- qnorm(upr_p)
lwrs <- betas - qn * se_betas
uprs <- betas + qn * se_betas
out <- matrix(c(lwrs, uprs), nrow = length(betas), ncol = 2,
dimnames = list(names(betas),
paste(round(100 * c(lwr_p, upr_p), 1), " %", sep = "")))
if (!is.null(parm)) {
out <- out[parm, , drop = FALSE]
}
out
}
#' @describeIn confint.geelm
#'
#' @export
confint.geeglm <- function(object, parm = NULL, level = 0.95, std.err = "san.se", ...) {
confint.geelm(object = object, parm = parm, level = level, std.err = std.err, ...)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.