Nothing
ess=function(x){
log=x
if(!"mcmc"%in%class(log)) stop("Supply 'log' as an 'mcmc' object")
rm=c("lnL.p", "lnL.h")
log=log[,which(!colnames(log)%in%rm)]
apply(log, 2, effectiveSize)
}
sem=function(x){
val=x[!is.na(x)]
if(!length(val)) return(NA)
sd(val)/sqrt(length(val))
}
#general statistical function for computing a highest density region (whose proportion is given by 'hpd')
#author: R FITZ-JOHN 2011 (from diversitree)
hdr <-
function (z, hpd = 0.95, lim = NULL)
{
hdr.uniroot <-
function (z, p = 0.95, lim = NULL)
{
xx <- sort(c(lim, seq(min(z), max(z), length = 1024)))
ez <- ecdf(z)
f <- suppressWarnings(approxfun(ez(xx), xx))
fit <- suppressWarnings(optimize(function(x) f(x + p) - f(x), c(0, 1 - p)))
if (inherits(fit, "try-error") || is.na(fit$objective))
stop("HDR interval failure")
ci <- fit$min
f(c(ci, ci + p))
}
ci <- try(hdr.uniroot(z, hpd, lim), silent = TRUE)
if (inherits(ci, "try-error")) {
warning("HDR falling back on quantile-based intervals")
ci <- as.numeric(quantile(z, c((1 - hpd)/2, 1/2 + hpd/2)))
}
ci
}
## HARMONIC MEAN ESTIMATOR of marginal likelihood
hme=function(x, scale=c("lnL", "logL", "p")){
scale=match.arg(scale, c("p", "logL", "lnL"))
const=0
y=x
if(scale=="lnL") {
const=max(x)
y=exp(x-const)
}
if(scale=="logL") {
const=max(x)
y=10^(x-const)
}
zz=length(y)/sum(1/y)
if(scale=="lnL") zz=log(zz)
if(scale=="logL") zz=log(zz, 10)
zz=zz+const
zz
}
.bf.interpreter=function(x){
set=unique(c(as.character(x[,"m1"]), as.character(x[,"m2"])))
foo=function(interp){
p=interp
z=ifelse(p=="bare mention", "~", ifelse(p%in%c("positive","substantial"), ">", ifelse(p%in%c("strong"), ">>", ">>>")))
return(z)
}
idx=numeric(length(set)-1)
for(i in 1:(length(set)-1)){
y1=set[i]
y2=set[i+1]
idx[i]=which(x[,"m1"]==y1 & x[,"m2"]==y2)
}
res=sapply(x[idx,"interp"], foo)
txt=paste(paste(set[-length(set)], res, collapse=" "), set[length(set)])
return(txt)
}
bf=function(x, scale=c("lnL","logL")){
list.obj=x
# list.obj must contain list of lnL (natural log) or logL (base 10) data
# list.obj=list(a=c(-1,-4,-5), b=c(-10,-4,-5))
# returns Bayes factor by computing the harmonic mean of likelihoods
if("matrix"%in%class(list.obj)) list.obj=data.frame(list.obj)
if(length(scale)>1) stop("'scale' of the data must be specified")
if(any(sapply(list.obj, length)>1)) warning("Using harmonic mean estimator for marginal likelihood")
hm=sapply(list.obj, hme, scale=scale)
combn=combn(names(list.obj),2)
t=data.frame(t(combn))
if(scale=="lnL") {
out=apply(combn, 2, function(x) {a=hm[[x[1]]]; b=hm[[x[2]]]; h=2*(hm[[x[1]]]-hm[[x[2]]]); return(c(a,b,h))})
res=cbind(t, twice_lnBF=t(out))
names(res)=c("m1", "m2", "lnL_m1", "lnL_m2", "twice_lnBF")
interp=data.frame(twice_lnBF=c(2, 6, 10, Inf), interp=c("bare mention", "positive", "strong", "very strong"))
rownames(interp)=c(0, 2, 6, 10)
rr=res$twice_lnBF<0
res$twice_lnBF=abs(res$twice_lnBF)
} else if(scale=="logL") {
out=apply(combn, 2, function(x) {a=hm[[x[1]]]; b=hm[[x[2]]]; h=hm[[x[1]]]-hm[[x[2]]]; return(c(a,b,h))})
res=cbind(t, logBF=t(out))
names(res)=c("m1", "m2", "logL_m1", "logL_m2", "logBF")
interp=data.frame(logBF=c(1/2, 1, 2, Inf), interp=c("bare mention", "substantial", "strong", "decisive"))
rownames(interp)=sprintf("%.1f",c(0, 1/2, 1, 2))
rr=res$logBF<0
res$logBF=abs(res$logBF)
}
rownames(res)=NULL
resnum=res[,3:5]
resfac=as.matrix(res[,1:2])
ordres=matrix(NA, nrow=nrow(res), ncol=ncol(res))
if(any(rr)){
for(i in 1:nrow(res)){
if(rr[i]) {
resnum[i,]=resnum[i,c(2,1,3)]
resfac[i,]=resfac[i,c(2,1)]
}
}
}
res=cbind(resfac, resnum)
res=res[order(res[,3], res[,4], decreasing=TRUE),]
rownames(res)=NULL
res$interp=sapply(1:nrow(res), function(i) as.character(interp$interp[min(which(abs(res[i,5])<interp[,1]))]))
attr(interp, "reference")="Kass and Raftery 1995 J Amer Stat Assoc"
attr(res, "interpretation")=interp
attr(res, "txt")=.bf.interpreter(res)
class(res)=c("bayesfactor", class(res))
return(res)
}
print.bayesfactor=function(x, ...){
cat("Bayes factor summary:\n\t")
cat(attributes(x)$txt)
cat("\n\n\n")
cat(paste("Interpretation uses", sQuote(attributes(attributes(x)$interpretation)$reference)), ":\n", sep="")
print(attributes(x)$interpretation)
cat("\n\n")
class(x)=class(x)[-which(class(x)=="bayesfactor")]
print(x)
}
.is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.