View source: R/testfunctions.R
banana | R Documentation |
Rosenbrock's banana function is defined by
f_{\rm banana}(x_1, ..., x_d) = \sum_{k = 1}^{d - 1} (100 (x_{k+1} - x_k^2)^2 + (x_k - 1)^2)
with x_k \in [-5, 10]
for k = 1, ..., d
and d \geq 2
.
banana(x)
bananaGrad(x)
x |
a numeric |
The gradient of Rosenbrock's banana function is
\nabla f_{\rm banana}(x_1, ..., x_d) = \begin{pmatrix} -400 (x_2 - x_1)^2 x_1 + 2 (x_1 - 1) \\ 200 (x_2 - x_1)^2 - 400 x_2 (x_3 - x_2^2) + 2 (x_2 - 1) \\ \vdots \\ 200 (x_{d-1} - x_{d-2})^2 - 400 x_{d-1} (x_d - x_{d-1}^2) + 2 (x_{d-1} - 1) \\ 200 (x_d - x_{d -1}^2)\end{pmatrix}.
Rosenbrock's banana function has one global minimum f_{\rm banana}(x^{\star}) = 0
at x^{\star} = (1,\dots, 1)
.
banana
returns the function value of Rosenbrock's banana function at x
.
bananaGrad
returns the gradient of Rosenbrock's banana function at x
.
Carmen van Meegen
Jamil, M. and Yang, X.-S. (2013). A Literature Survey of Benchmark Functions for Global Optimization Problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2):150-–194. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1504/IJMMNO.2013.055204")}.
Rosenbrock, H. H. (1960). An Automatic Method for Finding the Greatest or least Value of a Function. The Computer Journal, 3(3):175–184. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/comjnl/3.3.175")}.
Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).
# Contour plot of Rosenbrock's banana function
n.grid <- 50
x1 <- seq(-2, 2, length.out = n.grid)
x2 <- seq(-1, 3, length.out = n.grid)
y <- outer(x1, x2, function(x1, x2) banana(cbind(x1, x2)))
contour(x1, x2, y, xaxs = "i", yaxs = "i", nlevels = 25, xlab = "x1", ylab = "x2")
# Perspective plot of Rosenbrock's banana function
col.pal <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", "yellow",
"#FF7F00", "red", "#7F0000"))
colors <- col.pal(100)
y.facet.center <- (y[-1, -1] + y[-1, -n.grid] + y[-n.grid, -1] + y[-n.grid, -n.grid])/4
y.facet.range <- cut(y.facet.center, 100)
persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed",
col = colors[y.facet.range])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.