steel: Steel Column Function

View source: R/testfunctions.R

steelR Documentation

Steel Column Function

Description

The steel column function is defined by

f_{\rm steel}(x) = F_S - P \left(\frac{1}{2BD} + \frac{F_0 E_b}{BDH(E_b - P)} \right),

with P = P_1 + P_2 + P_3, E_b = \frac{\pi^2 EBDH^2}{2L^2} and x = (F_S, P_1, P_2, P_3, B, D, H, F_0, E).

Usage

steel(x, L = 7500)
steelGrad(x, L = 7500)

Arguments

x

a numeric vector of length 9 or a numeric matrix with n rows and 9 columns.

L

length in \rm mm of the steel column. Default is 7500.

Details

The steel column function describes the limite state function of a steel column with uncertain parameters.

Input Distribution Mean Standard Deviation Description
F_S \mathcal{LN} 400 35 yield stress in \rm MPa
P_1 \mathcal{N} 500000 50000 dead weight load in \rm N
P_2 \mathcal{G} 600000 90000 variable load in \rm N
P_3 \mathcal{G} 600000 90000 variable load in \rm N
B \mathcal{LN} b 3 flange breadth in \rm mm
D \mathcal{LN} t 2 flange thickness in \rm mm
H \mathcal{LN} h 5 profile height in \rm mm
F_0 \mathcal{N} 30 10 initial deflection in \rm mm
E \mathcal{W} 210000 4200 Young's modulus in \rm MPa

Here, \mathcal{N} is the normal distribution and \mathcal{LN} is the log-normal distribution. Further, \mathcal{G} represents the Gumbel distribution and \mathcal{W} denotes the Weibull distribution.

Value

steel returns the function value of steel column function at x.

steelGrad returns the gradient of steel column function at x.

Author(s)

Carmen van Meegen

References

Kuschel, N. and Rackwitz, R. (1997). Two Basic Problems in Reliability-Based Structural Optimization. Mathematical Methods of Operations Research, 46(3):309–333.

Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).


gek documentation built on April 4, 2025, 12:35 a.m.

Related to steel in gek...