View source: R/testfunctions.R
steel | R Documentation |
The steel column function is defined by
f_{\rm steel}(x) = F_S - P \left(\frac{1}{2BD} + \frac{F_0 E_b}{BDH(E_b - P)} \right),
with P = P_1 + P_2 + P_3
, E_b = \frac{\pi^2 EBDH^2}{2L^2}
and x = (F_S, P_1, P_2, P_3, B, D, H, F_0, E)
.
steel(x, L = 7500)
steelGrad(x, L = 7500)
x |
a numeric |
L |
length in |
The steel column function describes the limite state function of a steel column with uncertain parameters.
Input | Distribution | Mean | Standard Deviation | Description |
F_S | \mathcal{LN} | 400 | 35 | yield stress in \rm MPa |
P_1 | \mathcal{N} | 500000 | 50000 | dead weight load in \rm N |
P_2 | \mathcal{G} | 600000 | 90000 | variable load in \rm N |
P_3 | \mathcal{G} | 600000 | 90000 | variable load in \rm N |
B | \mathcal{LN} | b | 3 | flange breadth in \rm mm |
D | \mathcal{LN} | t | 2 | flange thickness in \rm mm |
H | \mathcal{LN} | h | 5 | profile height in \rm mm |
F_0 | \mathcal{N} | 30 | 10 | initial deflection in \rm mm |
E | \mathcal{W} | 210000 | 4200 | Young's modulus in \rm MPa |
Here, \mathcal{N}
is the normal distribution and \mathcal{LN}
is the log-normal distribution.
Further, \mathcal{G}
represents the Gumbel distribution and \mathcal{W}
denotes the Weibull distribution.
steel
returns the function value of steel column function at x
.
steelGrad
returns the gradient of steel column function at x
.
Carmen van Meegen
Kuschel, N. and Rackwitz, R. (1997). Two Basic Problems in Reliability-Based Structural Optimization. Mathematical Methods of Operations Research, 46(3):309–333.
Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.