View source: R/testfunctions.R
qing | R Documentation |
Qing function is defined by
f_{\rm qing}(x_1, ..., x_d) = \sum_{k = 1}^{d} (x_i^2 - i)^2
with x_k \in [-500, 500]
for k = 1, ..., d
.
qing(x)
qingGrad(x)
x |
a numeric |
The gradient of Qing function is
\nabla f_{\rm qing}(x_1, ..., x_d) = \begin{pmatrix} 4 x_1 (x_1^2 - 1) \\ \vdots \\ 4 x_d (x_d^2 - d) \end{pmatrix}.
Qing function has 2^d
global minimum f_{\rm qing}(x^{\star}) = 0
at x^{\star} = (\pm \sqrt{1},\dots, \pm \sqrt{d})
.
qing
returns the function value of Qing function at x
.
qingGrad
returns the gradient of Qing function at x
.
Carmen van Meegen
Qing, A. (2006). Dynamic Differential Evolution Strategy and Applications in Electromagnetic Inverse Scattering Problems. IEEE Transactions on Geoscience and Remote Sensing, 44(1):116-–125. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1109/TGRS.2005.859347")}.
Jamil, M. and Yang, X.-S. (2013). A Literature Survey of Benchmark Functions for Global Optimization Problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2):150-–194. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1504/IJMMNO.2013.055204")}.
# 1-dimensional Qing function with tangents
curve(qing(x), from = -1.7, to = 1.7)
x <- seq(-1.5, 1.5, length = 5)
y <- qing(x)
dy <- qingGrad(x)
tangents(x, y, dy, length = 1, lwd = 2, col = "red")
points(x, y, pch = 16)
# Contour plot of Qing function
n.grid <- 50
x1 <- seq(-2, 2, length.out = n.grid)
x2 <- seq(-2, 2, length.out = n.grid)
y <- outer(x1, x2, function(x1, x2) qing(cbind(x1, x2)))
contour(x1, x2, y, xaxs = "i", yaxs = "i", nlevels = 25, xlab = "x1", ylab = "x2")
# Perspective plot of Qing function
col.pal <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", "yellow",
"#FF7F00", "red", "#7F0000"))
colors <- col.pal(100)
y.facet.center <- (y[-1, -1] + y[-1, -n.grid] + y[-n.grid, -1] + y[-n.grid, -n.grid])/4
y.facet.range <- cut(y.facet.center, 100)
persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed",
col = colors[y.facet.range])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.