View source: R/testfunctions.R
borehole | R Documentation |
The borehole function is defined by
f_{\rm borehole}(x) = \frac{2 \pi T_u (H_u - H_l)}{\log(r/r_w)\left(1 + \frac{2 L T_u}{\log(r / r_w) r_w^2 K_w} + \frac{T_u}{T_l}\right)}
with x = (r_w, r, T_u, H_u, T_l, H_l, L, K_w)
.
borehole(x)
boreholeGrad(x)
x |
a numeric |
The borehole function calculates the water flow rate \rm [m^3/yr]
through a borehole.
Input | Domain | Distribution | Description |
r_w | [0.05, 0.15] | \mathcal{N}(0.1, 0.0161812) | radius of borehole in \rm m |
r | [100, 50\,000] | \mathcal{LN}(7.71, 1.0056) | radius of influence in \rm m |
T_u | [63070, 115600] | \mathcal{U}(63070, 115600) | transmissivity of upper aquifer in \rm m^2/yr |
H_u | [990, 1100] | \mathcal{U}(990, 1110) | potentiometric head of upper aquifer in \rm m |
T_l | [63.1, 116] | \mathcal{U}(63.1, 116) | transmissivity of lower aquifer in \rm m^2/yr |
H_l | [700, 820] | \mathcal{U}(700, 820) | potentiometric head of lower aquifer in \rm m |
L | [1120, 1680] | \mathcal{U}(1120, 1680) | length of borehole in \rm m |
K_w | [9855, 12045] | \mathcal{U}(9855, 12045) | hydraulic conductivity of borehole in \rm m/yr |
Note, \mathcal{N}(\mu, \sigma)
represents the normal distribution with expected value \mu
and standard deviation \sigma
and \mathcal{LN}(\mu, \sigma)
is the log-normal distribution with mean \mu
and standard deviation \sigma
of the logarithm.
Further, \mathcal{U}(a,b)
denotes the continuous uniform distribution over the interval [a,b]
.
borehole
returns the function value of borehole function at x
.
boreholeGrad
returns the gradient of borehole function at x
.
Carmen van Meegen
Harper, W. V. and Gupta, S. K. (1983). Sensitivity/Uncertainty Analysis of a Borehole Scenario Comparing Latin Hypercube Sampling and Deterministic Sensitivity Approaches. BMI/ONWI-516, Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, OH.
Morris, M., Mitchell, T., and Ylvisaker, D. (1993). Bayesian Design and Analysis of Computer Experiments: Use of Derivatives in Surface Prediction. Technometrics, 35(3):243–255. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00401706.1993.10485320")}.
gekm
for another example.
# List of inputs with their distributions and their respective ranges
inputs <- list("r_w" = list(dist = "norm", mean = 0.1, sd = 0.0161812, min = 0.05, max = 0.15),
"r" = list(dist = "lnorm", meanlog = 7.71, sdlog = 1.0056, min = 100, max = 50000),
"T_u" = list(dist = "unif", min = 63070, max = 115600),
"H_u" = list(dist = "unif", min = 990, max = 1110),
"T_l" = list(dist = "unif", min = 63.1, max = 116),
"H_l" = list(dist = "unif", min = 700, max = 820),
"L" = list(dist = "unif", min = 1120, max = 1680),
# for a more nonlinear, nonadditive function, see Morris et al. (1993)
"K_w" = list(dist = "unif", min = 1500, max = 15000))
# Function for Monte Carlo simulation
samples <- function(x, N = 10^5){
switch(x$dist,
"norm" = rnorm(N, x$mean, x$sd),
"lnorm" = rlnorm(N, x$meanlog, x$sdlog),
"unif" = runif(N, x$min, x$max))
}
# Uncertainty distribution of the water flow rate
set.seed(1)
X <- sapply(inputs, samples)
y <- borehole(X)
hist(y, breaks = 50, xlab = expression(paste("Water flow rate ", group("[", m^3/yr, "]"))),
main = "", freq = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.