View source: R/testfunctions.R
sphere | R Documentation |
The sphere function is defined by
f_{\rm sphere}(x_1, ..., x_d) = \sum_{k = 1}^{d} x_k^2
with x_k \in [-5.12, 5.12]
for k = 1, ..., d
.
sphere(x)
sphereGrad(x)
x |
a numeric |
The gradient of the sphere function is
\nabla f_{\rm sphere}(x_1, \dots, x_d) = \begin{pmatrix} 2 x_1 \\ \vdots \\ 2 x_d \end{pmatrix}.
The sphere function has one global minimum f_{\rm sphere}(x^{\star}) = 0
at x^{\star} = (0, \dots, 0)
.
sphere
returns the function value of the sphere function at x
.
sphereGrad
returns the gradient of the sphere function at x
.
Carmen van Meegen
Plevris, V. and Solorzano, G. (2022). A Collection of 30 Multidimensional Functions for Global Optimization Benchmarking. Data, 7(4):46. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3390/data7040046")}.
Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).
tangents
for drawing tangent lines.
# 1-dimensional sphere function with tangents
curve(sphere(x), from = -5, to = 5)
x <- seq(-4.5, 4.5, length = 5)
y <- sphere(x)
dy <- sphereGrad(x)
tangents(x, y, dy, length = 2, lwd = 2, col = "red")
points(x, y, pch = 16)
# Contour plot of sphere function
n.grid <- 50
x1 <- x2 <- seq(-5.12, 5.12, length.out = n.grid)
y <- outer(x1, x2, function(x1, x2) sphere(cbind(x1, x2)))
contour(x1, x2, y, xaxs = "i", yaxs = "i", nlevels = 25, xlab = "x1", ylab = "x2")
# Perspective plot of sphere function
col.pal <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", "yellow",
"#FF7F00", "red", "#7F0000"))
colors <- col.pal(100)
y.facet.center <- (y[-1, -1] + y[-1, -n.grid] + y[-n.grid, -1] + y[-n.grid, -n.grid])/4
y.facet.range <- cut(y.facet.center, 100)
persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed",
col = colors[y.facet.range])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.