Description Usage Arguments Details Value Author(s) See Also Examples
This function links the classification method to the procedures to find the seed genes and the signatures. If necessary this function can be rewritten in order to use a different classification method. Actually the classification method linked is the partitioning around medoids (see pam() function for details)
1 | classify(ddata)
|
ddata |
can be either a list of real values (gene expression levels) or a data-matrix where the rows are the samples and the columns are the genes. |
The function provides two clusters.
If ddata is a list of real values (1 gene expression levels) the function calls an unbiased version of pam (see pamUnbiased() function for details). In this case two elements are returned
clusters |
list of 1-2 indicators of the two clusters. |
missing |
list of T-F logical values where T labels the values set to missing by pamUnbiased(). |
If ddata is a real matrix (more than 1 expression levels) the function calls pam() and returns an object of pam class with an additional slot
clusters |
list of 1-2 indicators of the two clusters. |
Stefano M. Pagnotta and Michele Ceccarelli
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # univariate classification
data(geNSCLC)
sum(is.na(geNSCLC[, "SELP"]))
ans <- classify(geNSCLC[, "SELP"])
table(ans$clusters)
sum(ans$missing)
mean(geNSCLC[which(ans$clusters == 1), "SELP"], na.rm = TRUE)
mean(geNSCLC[which(ans$clusters == 2), "SELP"], na.rm = TRUE)
# multivariate classification
data(geNSCLC)
ddata <- geNSCLC[, c("STX1A", "FADD", "STC1", "RNF5")]
ans <- classify(ddata)$clusters
table(ans)
rbind(apply(ddata[ans == 1, ], 2, mean, na.rm = TRUE),
apply(ddata[ans == 2, ], 2, mean, na.rm = TRUE))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.