bootSignPcent: Probability of unambiguously correct (+ or -) sign from...

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/bootSignPcent.R

Description

If there are p columns of data, bootSignPcent produces a p-1 by 1 vector of probabilities of correct signs assuming that the mean of n999 values has the correct sign and assuming that m of the 'ui' index values inside the range [-tau, tau] are neither positive nor negative but indeterminate or ambiguous (being too close to zero). That is, the denominator of P(+1) or P(-1) is (n999-m) if m signs are too close to zero. Thus it measures the bootstrap success rate in identifying the correct sign, when the sign of the average of n999 bootstraps is assumed to be correct.

Usage

1
bootSignPcent(out, tau = 5)

Arguments

out

output from bootPairs with p-1 columns and n999 rows

tau

threshold to determine what value is too close to zero, default tau=5 is 5 percent threshold for the unanimity index ui

Value

sgn When mtx has p columns, sgn reports pairwise p-1 signs representing (fixing the first column in each pair) the average sign after averaging the output of of bootPairs(mtx) (a n999 by p-1 matrix) each containing resampled ‘sum’ values summarizing the weighted sums associated with all three criteria from the function silentPairs(mtx) applied to each bootstrap sample separately. #'

Author(s)

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

References

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, https://doi.org/gffn86

Vinod, H. D. and Lopez-de-Lacalle, J. (2009). 'Maximum entropy bootstrap for time series: The meboot R package.' Journal of Statistical Software, Vol. 29(5), pp. 1-19.

Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://www.ssrn.com/abstract=2982128

See Also

See Also silentPairs, bootQuantile, bootSign.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
## Not run: 
options(np.messages = FALSE)
set.seed(34);x=sample(1:10);y=sample(2:11)
bb=bootPairs(cbind(x,y),n999=29)
bootSignPcent(bb,tau=5) #gives success rate in n999 bootstrap sum computations

bb=bootPairs(airquality,n999=999);options(np.messages=FALSE)
bootSignPcent(bb,tau=5)#success rate for signs from n999 bootstraps

data('EuroCrime');options(np.messages=FALSE)
attach(EuroCrime)
bb=bootPairs(cbind(crim,off),n999=29) #col.1= crim causes off 
#hence positive signs are more intuitively meaningful.
#note that n999=29 is too small for real problems, chosen for quickness here.
bootSignPcent(bb,tau=5)#successful signs from n999 bootstraps

## End(Not run)

generalCorr documentation built on Jan. 4, 2022, 1:08 a.m.