# DGzx: Gravity anomaly in 2.5D In geophys: Geophysics, Continuum Mechanics, Gravity Modeling

## Description

Gravity anomaly in 2.5-Dimensions from an arbitrary polynomial at many stations.

## Usage

 `1` ```DGzx(xs, zs, xv, zv, den) ```

## Arguments

 `xs` station locations in X `zs` station locations in Z `xv` x-vertices `zv` z-vertices `den` density contrast

## Details

calculate the 2.5D solution to gravity. Orientation of the vertices should be right handed.

## Value

vector of Delta-Gz and Delta-Gx at each station

## Author(s)

Jonathan M. Lees<[email protected]>

## References

Won and Bevis (1987) Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines <doi:https://doi.org/10.1190/1.1442298>

## Examples

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23``` ```nstn = 10 xstart = -10000 xend = 10000 xcen = 0 zcen = 5000 RAD = 2000 xs = seq(from=xstart, by=(xend-xstart)/nstn , length=nstn) zs = rep(0, length=length(xs)) den = 0.2 Np = 6 theta = seq(from=0, to=2*pi, length=Np) KZ = list(x=NA, y=NA) KZ\$x = xcen+RAD*cos(theta) KZ\$y = zcen+RAD*sin(theta) Ngrav = DGzx(xs, zs, KZ\$x, KZ\$y, den) ```

geophys documentation built on Jan. 22, 2018, 1:01 a.m.