Nothing
iter=20
refresh = 0
source("helpers.R")
context("stan_glm")
test_that("GLM works", {
data(sentencing)
SW(
fit <- stan_glm(sents ~ offset(log(expected_sents)),
data = sentencing,
chains = 1,
family = poisson(),
init_r = 0.2,
iter = iter,
refresh = refresh)
)
expect_geostan(fit)
SW(
fit <- stan_glm(log(sents/expected_sents) ~ 1,
data = sentencing,
chains = 1,
iter = iter,
refresh = refresh)
)
expect_geostan(fit)
})
test_that("GLM works, centerx = TRUE", {
SW(
fit <- stan_glm(deaths.male ~ offset(log(pop.at.risk.male)) + college + black,
data = georgia,
chains = 1,
centerx = TRUE,
family = poisson(),
iter = iter,
refresh = refresh)
)
expect_geostan(fit)
})
test_that("GLM works with covariate ME", {
data(georgia)
n <- nrow(georgia)
ME <- prep_me_data(se = data.frame(ICE = georgia$ICE.se))
SW(
fit <- stan_glm(log(rate.male) ~ ICE,
ME = ME,
data = georgia,
chains = 1,
iter = iter,
refresh = refresh)
)
expect_geostan(fit)
SW(
fit <- stan_glm(log(rate.male) ~ ICE,
ME = ME,
data = georgia,
chains = 1,
slim = TRUE,
iter = iter,
refresh = refresh)
)
expect_geostan(fit)
})
test_that("GLM works with covariate ME: spatial data model", {
data(georgia)
A <- shape2mat(georgia, "B")
ME <- prep_me_data(
se = data.frame(ICE = georgia$ICE.se),
car_parts = prep_car_data(A)
)
SW(
fit <- stan_glm(log(rate.male) ~ ICE,
ME = ME,
data = georgia,
chains = 1,
iter = iter,
refresh = refresh)
)
expect_geostan(fit)
SW(
fit <- stan_glm(log(rate.male) ~ ICE,
ME = ME,
data = georgia,
slim = TRUE,
chains = 1,
iter = iter,
refresh = refresh)
)
expect_geostan(fit)
})
test_that("GLM accepts covariate ME, multiple proportions", {
data(georgia)
A <- shape2mat(georgia, "B")
ME <- prep_me_data(
se = data.frame(
insurance = georgia$insurance.se,
college = georgia$college.se
),
bounds = c(0, 100)
)
SW(
fit <- stan_glm(log(rate.male) ~ insurance + college,
ME = ME,
data = georgia,
chains = 1,
iter = iter,
refresh = refresh)
)
expect_geostan(fit)
})
test_that("GLM accepts covariate ME, with logit transform", {
data(georgia)
georgia$insurance <- georgia$insurance / 100
georgia$insurance.se <- georgia$insurance.se / 100
ME <- prep_me_data(
se = data.frame(
insurance = georgia$insurance.se
),
logit = TRUE,
bounds = c(0, 1)
)
SW(
fit <- stan_glm(log(rate.male) ~ insurance,
ME = ME,
data = georgia,
chains = 1,
iter = iter,
refresh = refresh)
)
expect_geostan(fit)
SW(
fit <- stan_glm(log(rate.male) ~ insurance + college,
ME = ME,
data = georgia,
chains = 1,
iter = iter,
refresh = refresh)
)
expect_geostan(fit)
})
test_that("Set priors for GLM", {
data(georgia)
SW(
fit <- stan_glm(log(rate.male) ~ insurance + college,
data = georgia,
chains = 1,
family = student_t(),
prior = list(
nu = gamma2(3, 0.1),
beta = normal(location = c(0,0),
scale = c(10,10)),
intercept = normal(0, 10),
sigma = student_t(10, 0, 5)
),
iter = iter,
refresh = refresh,
init_r = 0.1
)
)
expect_geostan(fit)
})
test_that("GLM with censored y", {
data(georgia)
SW(
fit <- stan_glm(deaths.female ~ offset(log(pop.at.risk.female)) + ICE + college,
censor_point = 9,
data = georgia,
chains = 1,
family = poisson(),
prior = list(
beta = normal(location = c(0,0),
scale = c(5,5)),
intercept = normal(-4, 5)
),
iter = iter,
refresh = refresh,
init_r = 0.1
)
)
expect_geostan(fit)
})
test_that("Slim GLM works", {
N <- 20 * 26
x <- rnorm(n = N)
y <- .75 *x + rnorm(n = N, sd = .5)
df <- data.frame(y=y, x=x)
SW(
fit <- stan_glm(y ~ x,
data = df,
chains = 1,
iter = iter,
refresh = refresh,
slim = TRUE)
)
expect_geostan(fit)
SW(
fit <- stan_glm(y ~ x,
data = df,
chains = 1,
iter = iter,
refresh = refresh,
drop = c('fitted', 'fake'))
)
expect_geostan(fit)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.