View source: R/gets-base-source.R
| blocksFun | R Documentation |
Auxiliary function (i.e. not intended for the average user) that enables block-based GETS-modelling with user-specified estimator, diagnostics and goodness-of-fit criterion.
blocksFun(y, x, untransformed.residuals=NULL, blocks=NULL,
no.of.blocks=NULL, max.block.size=30, ratio.threshold=0.8,
gets.of.union=TRUE, force.invertibility=FALSE,
user.estimator=list(name="ols"), t.pval=0.001, wald.pval=t.pval,
do.pet=FALSE, ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL,
user.diagnostics=NULL, gof.function=list(name="infocrit"),
gof.method=c("min", "max"), keep=NULL, include.gum=FALSE,
include.1cut=FALSE, include.empty=FALSE, max.paths=NULL,
turbo=FALSE, parallel.options=NULL, tol=1e-07, LAPACK=FALSE,
max.regs=NULL, print.searchinfo=TRUE, alarm=FALSE)
y |
a numeric vector (with no missing values, i.e. no non-numeric 'holes') |
x |
a |
untransformed.residuals |
|
blocks |
|
no.of.blocks |
|
max.block.size |
|
ratio.threshold |
|
gets.of.union |
|
force.invertibility |
|
user.estimator |
|
t.pval |
|
wald.pval |
|
do.pet |
|
ar.LjungB |
a two element |
arch.LjungB |
a two element |
normality.JarqueB |
|
user.diagnostics |
|
gof.function |
|
gof.method |
|
keep |
|
include.gum |
|
include.1cut |
|
include.empty |
|
max.paths |
|
turbo |
|
parallel.options |
|
tol |
|
LAPACK |
currently not used |
max.regs |
|
print.searchinfo |
|
alarm |
|
blocksFun undertakes block-based GETS modelling by a repeated but structured call to getsFun. For the details of how to user-specify an estimator via user.estimator, diagnostics via
user.diagnostics and a goodness-of-fit function via gof.function, see documentation of getsFun under "Details".
The algorithm of blocksFun is similar to that of isat, but more flexible. The main use of blocksFun is the creation of user-specified methods that employs block-based GETS modelling, e.g. indicator saturation techniques.
A list with the results of the block-based GETS-modelling.
Genaro Sucarrat, with contributions from Jonas kurle, Felix Pretis and James Reade
F. Pretis, J. Reade and G. Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
G. sucarrat (2020): 'User-Specified General-to-Specific and Indicator Saturation Methods'. The R Journal 12 issue 2, pp. 388-401, https://journal.r-project.org/archive/2021/RJ-2021-024/
getsFun, ols, diagnostics, infocrit and isat
## more variables than observations:
y <- rnorm(20)
x <- matrix(rnorm(length(y)*40), length(y), 40)
blocksFun(y, x)
## 'x' as list of matrices:
z <- matrix(rnorm(length(y)*40), length(y), 40)
blocksFun(y, list(x,z))
## ensure regressor no. 3 in matrix no. 2 is not removed:
blocksFun(y, list(x,z), keep=list(integer(0), 3))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.