View source: R/gets-larch-source.R
larch | R Documentation |
The function larch()
estimates a heterogeneous log-ARCH-X model, which is a generalisation of the dynamic log-variance model in Pretis, Reade and Sucarrat (2018). Internally, estimation is undertaken by a call to larchEstfun
. The log-variance specification can contain log-ARCH terms, log-HARCH terms, asymmetry terms ('leverage'), the log of volatility proxies made up of past returns and other covariates ('X'), for example Realised Volatility (RV), volume or the range.
larch(e, vc=TRUE, arch = NULL, harch = NULL, asym = NULL, asymind = NULL,
log.ewma = NULL, vxreg = NULL, zero.adj = NULL,
vcov.type = c("robust", "hac"), qstat.options = NULL,
normality.JarqueB = FALSE, tol = 1e-07, singular.ok = TRUE, plot = NULL)
e |
|
vc |
|
arch |
either |
harch |
either |
asym |
either |
asymind |
either |
log.ewma |
either |
vxreg |
either |
zero.adj |
|
vcov.type |
|
qstat.options |
|
normality.JarqueB |
|
tol |
|
singular.ok |
|
plot |
|
No details for the moment
A list of class 'larch'
Genaro Sucarrat: https://www.sucarrat.net/
G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270
F. Corsi (2009): 'A Simple Approximate Long-Memory Model of Realized Volatility', Journal of Financial Econometrics 7, pp. 174-196
C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/0165-1765(80)90024-5")}
U. Muller, M. Dacorogna, R. Dave, R. Olsen, O. Pictet and J. von Weizsacker (1997): 'Volatilities of different time resolutions - analyzing the dynamics of market components'. Journal of Empirical Finance 4, pp. 213-239
F. Pretis, J. Reade and G. Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v086.i03")}
H. White (1980): 'A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity', Econometrica 48, pp. 817-838.
W.K. Newey and K.D. West (1987): 'A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix', Econometrica 55, pp. 703-708.
Methods and extraction functions (mostly S3 methods): coef.larch
, ES
, fitted.larch
, gets.larch
,
logLik.larch
, nobs.larch
, plot.larch
, predict.larch
, print.larch
,
residuals.larch
, summary.larch
, VaR
, toLatex.larch
and vcov.arx
regressorsVariance
##Simulate some data:
set.seed(123)
e <- rnorm(40)
x <- matrix(rnorm(40*2), 40, 2)
##estimate a log-variance specification with a log-ARCH(4)
##structure:
larch(e, arch=1:4)
##estimate a log-variance specification with a log-ARCH(4)
##structure, a log-HARCH(5) term and a first-order asymmetry/leverage
##term:
larch(e, arch=1:4, harch=5, asym=1)
##estimate a log-variance specification with a log-ARCH(4)
##structure, an asymmetry/leverage term, a 10-period log(EWMA) as
##volatility proxy, and the log of the squareds of the conditioning
##regressors in the log-variance specification:
larch(e, arch=1:4, asym=1, log.ewma=list(length=10), vxreg=log(x^2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.