View source: R/gets-base-source.R
isat | R Documentation |
The isat
function undertakes multi-path indicator saturation to detect outliers and mean-shifts using impulses (IIS), step-shifts (SIS), or trend-indicators (TIS). Indicators are partitioned into blocks and selected over at a chosen level of significance (t.pval
) using the getsm
function.
isat(y, ...)
##default S3 method:
## Default S3 method:
isat(y, mc=TRUE, ar=NULL, ewma=NULL, mxreg=NULL, iis=FALSE, sis=TRUE,
tis=FALSE, uis=FALSE, blocks=NULL, ratio.threshold=0.8, max.block.size=30,
t.pval=0.001, wald.pval=t.pval,
vcov.type= c("ordinary","white","newey-west"), do.pet=FALSE, ar.LjungB=NULL,
arch.LjungB=NULL, normality.JarqueB=NULL, info.method=c("sc","aic","hq"),
user.diagnostics=NULL, user.estimator=NULL, gof.function=NULL,
gof.method = c("min", "max"), include.gum=NULL, include.1cut=FALSE,
include.empty=FALSE, max.paths=NULL, parallel.options=NULL, turbo=FALSE,
tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, plot=NULL,
alarm=FALSE, ...)
##S3 method for objects of class 'lm':
## S3 method for class 'lm'
isat(y, ar=NULL, ewma=NULL, iis=FALSE, sis=TRUE,
tis=FALSE, uis=FALSE, blocks=NULL, ratio.threshold=0.8, max.block.size=30,
t.pval=0.001, wald.pval=t.pval,
vcov.type= c("ordinary","white","newey-west"), do.pet=FALSE, ar.LjungB=NULL,
arch.LjungB=NULL, normality.JarqueB=NULL, info.method=c("sc","aic","hq"),
user.diagnostics=NULL, user.estimator=NULL, gof.function=NULL,
gof.method = c("min", "max"), include.gum=NULL, include.1cut=FALSE,
include.empty=FALSE, max.paths=NULL, parallel.options=NULL, turbo=FALSE,
tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, plot=NULL,
alarm=FALSE, ...)
##S3 method for objects of class 'arx':
## S3 method for class 'arx'
isat(y, mc=TRUE, ar=NULL, ewma=NULL, iis=FALSE, sis=TRUE,
tis=FALSE, uis=FALSE, blocks=NULL, ratio.threshold=0.8, max.block.size=30,
t.pval=0.001, wald.pval=t.pval,
vcov.type= c("ordinary","white","newey-west"), do.pet=FALSE, ar.LjungB=NULL,
arch.LjungB=NULL, normality.JarqueB=NULL, info.method=c("sc","aic","hq"),
user.diagnostics=NULL, user.estimator=NULL, gof.function=NULL,
gof.method = c("min", "max"), include.gum=NULL, include.1cut=FALSE,
include.empty=FALSE, max.paths=NULL, parallel.options=NULL, turbo=FALSE,
tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, plot=NULL,
alarm=FALSE, ...)
y |
numeric vector, time-series, |
mc |
logical. |
ar |
integer vector, say, c(2,4) or 1:4. The AR-lags to include in the mean specification |
ewma |
either NULL (default) or a list with arguments sent to the |
mxreg |
numeric vector or matrix, say, a |
iis |
logical. If |
sis |
logical. If |
tis |
logical. If |
uis |
a matrix of regressors, or a list of matrices. |
blocks |
|
ratio.threshold |
Minimum ratio of variables in each block to total observations to determine the block size, default=0.8. Only relevant if blocks = |
max.block.size |
Maximum size of block of variables to be selected over, default=30. Block size used is the maximum of given by either the ratio.threshold and max.block.size |
t.pval |
numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests |
wald.pval |
numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs) |
vcov.type |
the type of variance-covariance matrix used. If NULL (default), then the type used is that of the 'arx' object. This can be overridden by either "ordinary" (i.e. the ordinary variance-covariance matrix) or "white" (i.e. the White (1980) heteroscedasticity robust variance-covariance matrix) |
do.pet |
logical. If |
ar.LjungB |
a two-item list with names |
arch.LjungB |
a two-item list with names |
normality.JarqueB |
|
info.method |
character string, "sc" (default), "aic" or "hq", which determines the information criterion to be used when selecting among terminal models. The abbreviations are short for the Schwarz or Bayesian information criterion (sc), the Akaike information criterion (aic) and the Hannan-Quinn (hq) information criterion |
user.diagnostics |
|
user.estimator |
|
gof.function |
|
gof.method |
|
include.gum |
ignored (temporarily deprecated) |
include.1cut |
logical. If |
include.empty |
logical. If |
max.paths |
|
parallel.options |
|
turbo |
logical. If |
tol |
numeric value (default = 1e-07). The tolerance for detecting linear dependencies in the columns of the regressors (see |
LAPACK |
logical. If |
max.regs |
integer. The maximum number of regressions along a deletion path. It is not recommended that this is altered |
print.searchinfo |
logical. If |
plot |
NULL or logical. If |
alarm |
logical. If |
... |
further arguments passed to or from other methods |
Multi-path indicator saturation using impulses (IIS), step-shifts (SIS), or trend-indicators (TIS). Indicators are partitioned into sequential blocks (as of beta version 0.7) where the block intervals are defined by the ratio of variables to observations in each block and a specified maximum block size. Indicators are selected over using the getsm
function. Retained indicators in each block are combined and re-selected over. Fixed covariates that are not selected over can be included in the regression model either in the mxreg matrix, or for auto-regressive terms through the ar specification. See Hendry, Johansen and Santos (2007) and Castle, Doornik, Hendry, and Pretis (2015)
A list of class 'isat'
Jonas Kurle, https://www.jonaskurle.com/
Felix Pretis, https://felixpretis.climateeconometrics.org/
James Reade, https://sites.google.com/site/jjamesreade/
Moritz Schwarz, https://www.inet.ox.ac.uk/people/moritz-schwarz
Genaro Sucarrat https://www.sucarrat.net/
Castle, Jennifer, L., Doornik, Jurgen, A., Hendry, David F., and Pretis, Felix (2015): 'Detecting Location Shifts during Model Selection by Step-Indicator Saturation', Econometrics, vol 3:2, 240-264.
Hendry, David, F., Johansen, Soren, and Santos, Carlos (2007): 'Automatic selection of indicators in a fully saturated regression'. Computational Statistics, vol 23:1, pp.317-335.
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
Extraction functions for 'isat' objects: coef.isat
, fitted.isat
, paths
, plot.isat
, print.isat
,
residuals.isat
, summary.isat
, terminals
, vcov.isat
Related functions: arx
, eqwma
, leqwma
, zoo
, getsFun
##SIS using the Nile data
data(Nile)
isat(Nile, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005)
##SIS using the Nile data in an autoregressive model
#isat(Nile, ar=1:2, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005)
##HP Data
##load Hoover and Perez (1999) data:
#data(hpdata)
##make quarterly data-matrix of zoo type
##(GCQ = personal consumption expenditure):
#y <- zooreg(hpdata$GCQ, 1959, frequency=4)
##transform data to log-differences:
#dlogy <- diff(log(y))
##run isat with step impulse saturation on four
##lags and a constant 1 percent significance level:
#isat(dlogy, ar=1:4, sis=TRUE, t.pval =0.01)
##Example with additional covariates entering through mxreg:
##(GYDQ = disposable personal income):
#x <- zooreg(hpdata$GYDQ, 1959, frequency=4)
##transform data to log-differences:
#dlogx <- diff(log(x))
##run isat with step impulse saturation on four
##lags and a constant 1 percent significance level:
#isat(dlogy, mxreg=dlogx, ar=1:4, sis=TRUE, t.pval =0.01)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.