View source: R/gets-larch-source.R
| gets.larch | R Documentation |
The starting model, an object of the 'larch' class (see larch, is referred to as the General Unrestricted Model (GUM). The gets.larch() function undertakes multi-path GETS modelling of the log-variance specification. The diagnostic tests are undertaken on the standardised residuals, and the keep option enables regressors to be excluded from possible removal.
## S3 method for class 'larch'
gets(x, t.pval=0.05, wald.pval=t.pval, do.pet=TRUE,
ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL,
user.diagnostics=NULL, info.method=c("sc", "aic", "aicc", "hq"),
gof.function=NULL, gof.method=NULL, keep=c(1), include.gum=FALSE,
include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07,
turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE, ...)
x |
an object of class 'larch' |
t.pval |
numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests |
wald.pval |
numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs). By default, |
do.pet |
logical. If |
ar.LjungB |
|
arch.LjungB |
|
normality.JarqueB |
|
user.diagnostics |
|
info.method |
character string, "sc" (default), "aic", "aicc" or "hq", which determines the information criterion to be used when selecting among terminal models. See |
gof.function |
|
gof.method |
|
keep |
the regressors to be kept (i.e. excluded from removal) in the specification search. Currently, |
include.gum |
logical. If |
include.1cut |
logical. If |
include.empty |
logical. If |
max.paths |
|
tol |
numeric value. The tolerance for detecting linear dependencies in the columns of the variance-covariance matrix when computing the Wald-statistic used in the Parsimonious Encompassing Tests (PETs), see the |
turbo |
logical. If |
print.searchinfo |
logical. If |
plot |
|
alarm |
logical. If |
... |
additional arguments |
See Pretis, Reade and Sucarrat (2018): \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v086.i03")}, and Sucarrat (2020): https://journal.r-project.org/archive/2021/RJ-2021-024/.
The arguments user.diagnostics and gof.function enable the specification of user-defined diagnostics and a user-defined goodness-of-fit function. For the former, see the documentation of diagnostics. For the latter, the principles of the same arguments in getsFun are followed, see its documentation under "Details", and Sucarrat (2020): https://journal.r-project.org/archive/2021/RJ-2021-024/.
A list of class 'larch', see larch, with additional information about the GETS modelling
Genaro Sucarrat, http://www.sucarrat.net/
C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/0165-1765(80)90024-5")}
G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270
Felix Pretis, James Reade and Genaro Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v086.i03")}
Genaro Sucarrat (2020): 'User-Specified General-to-Specific and Indicator Saturation Methods'. The R Journal 12:2, pages 388-401. https://journal.r-project.org/archive/2021/RJ-2021-024/
Methods and extraction functions (mostly S3 methods): coef.larch, ES, fitted.larch, gets.larch,
logLik.larch, nobs.larch, plot.larch, predict.larch, print.larch,
residuals.larch, summary.larch, VaR, toLatex.larch and vcov.arx
Related functions: eqwma, leqwma, regressorsVariance, zoo, getsFun, qr.solve
##Simulate some data:
set.seed(123)
e <- rnorm(40)
x <- matrix(rnorm(4*40), 40, 4)
##estimate a log-ARCH(3) with asymmetry and log(x^2) as regressors:
gum <- larch(e, arch=1:3, asym=1, vxreg=log(x^2))
##GETS modelling of the log-variance:
simple <- gets(gum)
##GETS modelling with intercept and log-ARCH(1) terms
##excluded from removal:
simple <- gets(gum, keep=c(1,2))
##GETS modelling with non-default autocorrelation
##diagnostics settings:
simple <- gets(gum, ar.LjungB=list(pval=0.05))
##GETS modelling with very liberal (40%) significance level:
simple <- gets(gum, t.pval=0.4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.