Nothing
#' @importFrom ggplot2 ggplot_build geom_blank waiver
#' @export
ggplot_build.gganim <- function(plot) {
plot <- plot_clone(plot)
if (length(plot$layers) == 0) {
plot <- plot + geom_blank()
}
# gganimate
scene <- create_scene(plot$transition, plot$view, plot$shadow, plot$ease, plot$transmuters, plot$nframes)
# --
layers <- plot$layers
data <- rep(list(NULL), length(layers))
scales <- plot$scales
# gganimate
# Extract scale names and merge it with label list
scale_labels <- lapply(scales$scales, `[[`, 'name')
names(scale_labels) <- vapply(scales$scales, function(sc) sc$aesthetics[1], character(1))
lapply(scales$scales, function(sc) sc$name <- waiver())
scale_labels <- scale_labels[!vapply(scale_labels, is.waive, logical(1))]
plot$labels[names(scale_labels)] <- scale_labels
# --
# Allow all layers to make any final adjustments based
# on raw input data and plot info
data <- by_layer(function(l, d) l$layer_data(plot$data), layers, data, "computing layer data")
data <- by_layer(function(l, d) l$setup_layer(d, plot), layers, data, "setting up layer")
# Initialise panels, add extra data for margins & missing faceting
# variables, and add on a PANEL variable to data
layout <- create_layout(plot$facet, plot$coordinates)
data <- layout$setup(data, plot$data, plot$plot_env)
# gganimate
scene$setup(data)
# --
# Compute aesthetics to produce data with generalised variable names
data <- by_layer(function(l, d) l$compute_aesthetics(d, plot), layers, data, "computing aesthetics")
# gganimate
scene$identify_layers(data, layers)
# --
# Transform all scales
data <- lapply(data, scales$transform_df)
# Map and train positions so that statistics have access to ranges
# and all positions are numeric
scale_x <- function() scales$get_scales("x")
scale_y <- function() scales$get_scales("y")
layout$train_position(data, scale_x(), scale_y())
data <- layout$map_position(data)
# gganimate
data <- scene$before_stat(data)
# --
# Apply and map statistics
data <- by_layer(function(l, d) l$compute_statistic(d, layout), layers, data, "computing stat")
data <- by_layer(function(l, d) l$map_statistic(d, plot), layers, data, "mapping stat to aesthetics")
# gganimate
data <- scene$after_stat(data)
# --
# Make sure missing (but required) aesthetics are added
plot$scales$add_missing(c("x", "y"), plot$plot_env)
# Reparameterise geoms from (e.g.) y and width to ymin and ymax
data <- by_layer(function(l, d) l$compute_geom_1(d), layers, data, "setting up geom")
# gganimate
data <- scene$before_position(data)
# --
# Apply position adjustments
data <- by_layer(function(l, d) l$compute_position(d, layout), layers, data, "computing position")
# gganimate
data <- scene$after_position(data)
# --
# Reset position scales, then re-train and map. This ensures that facets
# have control over the range of a plot: is it generated from what is
# displayed, or does it include the range of underlying data
layout$reset_scales()
layout$train_position(data, scale_x(), scale_y())
layout$setup_panel_params()
data <- layout$map_position(data)
new_guides <- inherits(plot$guides, "Guides")
if (new_guides) {
layout$setup_panel_guides(plot$guides, plot$layers)
}
# Train and map non-position scales
npscales <- scales$non_position_scales()
if (npscales$n() > 0) {
lapply(data, npscales$train_df)
if (new_guides) {
plot$guides <- plot$guides$build(npscales, plot$layers, plot$labels, data)
}
data <- lapply(data, npscales$map_df)
}
# Fill in defaults etc.
data <- by_layer(function(l, d) l$compute_geom_2(d), layers, data, "setting up geom aesthetics")
# gganimate
data <- scene$after_defaults(data)
# --
# Let layer stat have a final say before rendering
data <- by_layer(function(l, d) l$finish_statistics(d), layers, data, "finishing layer stat")
# Let Layout modify data before rendering
data <- layout$finish_data(data)
# gganimate
data <- scene$finish_data(data)
# --
# Consolidate alt-text
plot$labels$alt <- plot$labels[["alt"]] %||% ""
structure(
list(data = data, layout = layout, plot = plot, scene = scene),
class = "gganim_built"
)
}
# Apply function to layer and matching data
by_layer <- function(f, layers, data, step = NULL) {
ordinal <- scales::label_ordinal()
out <- vector("list", length(data))
try_fetch(
for (i in seq_along(data)) {
out[[i]] <- f(l = layers[[i]], d = data[[i]])
},
error = function(cnd) {
cli::cli_abort(c("Problem while {step}.", "i" = "Error occurred in the {ordinal(i)} layer."), call = layers[[i]]$constructor, parent = cnd)
}
)
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.