Nothing
get_predictions_mixor <- function(model, fitfram, ci.lvl, linv, value_adjustment, terms, model_class, condition, interval, ...) {
se <- (!is.null(ci.lvl) && !is.na(ci.lvl))
# compute ci, two-ways
if (!is.null(ci.lvl) && !is.na(ci.lvl))
ci <- (1 + ci.lvl) / 2
else
ci <- 0.975
# degrees of freedom
dof <- .get_df(model)
tcrit <- stats::qt(ci, df = dof)
prdat <- stats::predict(
model,
newdata = fitfram,
...
)
prdat <- as.data.frame(prdat$predicted)
# bind predictions to model frame
fitfram <- cbind(prdat, fitfram)
# for proportional ordinal logistic regression (see MASS::polr),
# we have predicted values for each response category. Hence,
# gather columns
fitfram <- .gather(fitfram, names_to = "response.level", values_to = "predicted", colnames(prdat))
se.pred <- .standard_error_predictions(
model = model,
prediction_data = fitfram,
value_adjustment = value_adjustment,
terms = terms,
model_class = model_class,
condition = condition,
interval = interval
)
if (.check_returned_se(se.pred) && isTRUE(se)) {
se.fit <- se.pred$se.fit
fitfram <- se.pred$prediction_data
# CI
fitfram$conf.low <- linv(stats::qlogis(fitfram$predicted) - tcrit * se.fit)
fitfram$conf.high <- linv(stats::qlogis(fitfram$predicted) + tcrit * se.fit)
# copy standard errors
attr(fitfram, "std.error") <- se.fit
attr(fitfram, "prediction.interval") <- attr(se.pred, "prediction_interval")
} else {
# CI
fitfram$conf.low <- NA
fitfram$conf.high <- NA
}
fitfram
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.