Nothing
skip_on_os(c("mac", "solaris"))
skip_if_not_installed("sjlabelled")
skip_if_not_installed("datawizard")
skip_if_not_installed("ggplot2")
# lm, linear regression ----
test_that("ggpredict, lm", {
data(efc, package = "ggeffects")
efc$c172code <- datawizard::to_factor(efc$c172code)
fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)
pr <- ggpredict(fit, "c12hour [20,30,40]")
p <- suppressWarnings(plot(pr))
p <- suppressWarnings(plot(pr, show_ci = FALSE))
p <- suppressWarnings(plot(pr, show_ci = TRUE, ci_style = "dot"))
p <- suppressWarnings(plot(pr, show_data = TRUE))
p <- suppressWarnings(plot(pr, show_data = TRUE, jitter = FALSE))
p <- suppressWarnings(plot(pr, colors = "bw"))
p <- suppressWarnings(plot(pr, colors = "gs"))
pr <- ggpredict(fit, c("c12hour", "c172code"))
p <- suppressWarnings(plot(pr))
p <- suppressWarnings(plot(pr, show_ci = FALSE))
p <- suppressWarnings(plot(pr, show_ci = TRUE, ci_style = "dot"))
p <- suppressWarnings(plot(pr, show_data = TRUE))
p <- suppressWarnings(plot(pr, show_data = TRUE, jitter = 0))
p <- suppressWarnings(plot(pr, facets = TRUE))
p <- suppressWarnings(plot(pr, facets = FALSE))
p <- suppressWarnings(plot(pr, use_theme = FALSE))
p <- suppressWarnings(plot(pr, colors = "bw"))
p <- suppressWarnings(plot(pr, colors = "gs"))
})
test_that("plot, correct x-labels order for character vector", {
d_char <- data.frame(
x = c("low", "low", "high", "high"),
y = c(0, 1, 10, 12),
stringsAsFactors = FALSE
)
m_char <- lm(y ~ x, data = d_char)
preds <- ggpredict(m_char, terms = "x [all]", verbose = FALSE)
expect_identical(
attributes(preds)$x.axis.labels,
c("high", "low")
)
preds <- ggpredict(m_char, terms = "x", verbose = FALSE)
expect_identical(
attributes(preds)$x.axis.labels,
c("low", "high")
)
d_char <- data.frame(
x = factor(c("low", "low", "high", "high")),
y = c(0, 1, 10, 12),
stringsAsFactors = FALSE
)
m_char <- lm(y ~ x, data = d_char)
preds <- ggpredict(m_char, terms = "x [all]")
expect_identical(
attributes(preds)$x.axis.labels,
c("high", "low")
)
})
skip_on_cran()
skip_if_not_installed("vdiffr")
test_that("ggpredict, lm", {
data(efc, package = "ggeffects")
efc$c172code <- datawizard::to_factor(efc$c172code)
fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)
pr <- ggpredict(fit, "c12hour")
vdiffr::expect_doppelganger(
"Simple plot",
plot(pr)
)
vdiffr::expect_doppelganger(
"Simple plot, no CI",
plot(pr, show_ci = FALSE)
)
vdiffr::expect_doppelganger(
"Simple plot, CI bands as dots",
plot(pr, show_ci = TRUE, ci_style = "dot")
)
set.seed(123)
vdiffr::expect_doppelganger(
"Simple plot, show data",
suppressWarnings(plot(pr, show_data = TRUE))
)
set.seed(123)
vdiffr::expect_doppelganger(
"Simple plot, show data, jitter",
plot(pr, show_data = TRUE, jitter = TRUE)
)
vdiffr::expect_doppelganger(
"Simple plot, bw",
plot(pr, colors = "bw")
)
vdiffr::expect_doppelganger(
"Simple plot, grey scale",
plot(pr, colors = "gs")
)
efc$c161sex <- datawizard::to_factor(efc$c161sex)
fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex * c172code, data = efc)
pr <- ggpredict(fit, c("c161sex", "c172code"))
vdiffr::expect_doppelganger(
"Simple plot, categorical",
plot(pr)
)
vdiffr::expect_doppelganger(
"Simple plot, categorical, no CI",
plot(pr, show_ci = FALSE)
)
vdiffr::expect_doppelganger(
"Simple plot, categorical, CI bands as dots",
plot(pr, show_ci = TRUE, ci_style = "dot")
)
set.seed(123)
vdiffr::expect_doppelganger(
"Simple plot, categorical, show data",
suppressWarnings(plot(pr, show_data = TRUE))
)
set.seed(123)
vdiffr::expect_doppelganger(
"Simple plot, categorical, show data, jitter",
plot(pr, show_data = TRUE, jitter = TRUE)
)
vdiffr::expect_doppelganger(
"Simple plot, categorical, bw",
plot(pr, colors = "bw")
)
vdiffr::expect_doppelganger(
"Simple plot, categorical, grey scale",
plot(pr, colors = "gs")
)
})
test_that("plot with data points", {
skip_if_not_installed("betareg")
skip_if_not_installed("datawizard")
set.seed(1)
ex <- data.frame(
x = rnorm(2000),
group = sample(letters[1:4], size = 2000, replace = TRUE),
stringsAsFactors = FALSE
)
ex <- datawizard::data_modify(
ex,
group_value = datawizard::recode_into(
group == "a" ~ 1,
group == "b" ~ 2,
group == "c" ~ 0,
group == "d" ~ -1
),
y_latent = x + rnorm(2000) + group_value,
y = pnorm(y_latent, sd = 3),
group = as.factor(group)
)
beta_fit <- betareg::betareg(y ~ x + group, data = ex)
beta_fit_preds <- ggpredict(beta_fit, terms = c("x", "group [a, b]"))
vdiffr::expect_doppelganger(
"Colored data points with special focal terms",
plot(beta_fit_preds, show_data = TRUE)
)
})
test_that("collapse groups works", {
skip_if_not_installed("lme4")
data(ChickWeight)
m <- lme4::lmer(weight ~ Diet + Time + (1 | Chick), data = ChickWeight)
gge <- ggpredict(m, terms = "Diet")
vdiffr::expect_doppelganger(
"Collapse random effects works again",
plot(gge, collapse_group = TRUE)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.