RobberyConvict: Court Convictions for Armed Robbery in New South Wales

Description Usage Format Source Examples

Description

Monthly counts of charges laid and convictions made in Local Courts and Higher Court in armed robbery in New South Wales from 1995–2007.

Usage

1

Format

A data frame containing the following columns:

[, 1] Date Date in month/year format.
[, 2] Incpt A vector of ones, providing the intercept in the model.
[, 3] Trend Scaled time trend.
[, 4] Step.2001 Unit step change from 2001 onwards.
[, 5] Trend.2001 Change in trend term from 2001 onwards.
[, 6] HC.N Monthly number of cases for robbery (Higher Court).
[, 7] HC.Y Monthly number of convictions for robbery (Higher court).
[, 8] HC.P Proportion of convictions to charges for robbery (Higher court).
[, 9] LC.N Monthly number of cases for robbery (Lower court).
[, 10] LC.Y Monthly number of convictions for robbery (Lower court).
[, 11] LC.P Proportion of convictions to charges for robbery (Lower court).

Source

Dunsmuir, William TM, Tran, Cuong, and Weatherburn, Don (2008) Assessing the Impact of Mandatory DNA Testing of Prison Inmates in NSW on Clearance, Charge and Conviction Rates for Selected Crime Categories.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
### Example with Robbery Convictions
data(RobberyConvict)
datalen <- dim(RobberyConvict)[1]
monthmat <- matrix(0, nrow = datalen, ncol = 12)
dimnames(monthmat) <- list(NULL, c("Jan", "Feb", "Mar", "Apr", "May", "Jun",
                                   "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
months <- unique(months(strptime(RobberyConvict$Date, format = "%m/%d/%Y"),
                        abbreviate=TRUE))


for (j in 1:12) {
  monthmat[months(strptime(RobberyConvict$Date,  "%m/%d/%Y"),
                  abbreviate = TRUE) == months[j], j] <-1
}

RobberyConvict <- cbind(rep(1, datalen), RobberyConvict, monthmat)
rm(monthmat)

## LOWER COURT ROBBERY
y1 <- RobberyConvict$LC.Y
n1 <- RobberyConvict$LC.N

Y <- cbind(y1, n1-y1)

glm.LCRobbery <- glm(Y ~ Step.2001 +
                        I(Feb + Mar + Apr + May + Jun + Jul) +
                        I(Aug + Sep + Oct + Nov + Dec),
                     data = RobberyConvict, family = binomial(link = logit),
                     na.action = na.omit, x = TRUE)

summary(glm.LCRobbery, corr = FALSE)

X <- glm.LCRobbery$x


## Newton Raphson
glarmamod <- glarma(Y, X, phiLags = c(1), type = "Bin", method = "NR",
                    residuals = "Pearson", maxit = 100, grad = 1e-6)
glarmamod
summary(glarmamod)

## LRT, Wald tests.
likTests(glarmamod)

## Residuals and Fit Plots
plot.glarma(glarmamod)


## HIGHER COURT ROBBERY
y1 <- RobberyConvict$HC.Y
n1 <- RobberyConvict$HC.N

Y <- cbind(y1, n1-y1)

glm.HCRobbery <- glm(Y ~ Trend + Trend.2001 +
                       I(Feb + Mar + Apr + May + Jun) + Dec,
                     data = RobberyConvict, family = binomial(link = logit),
                     na.action = na.omit, x = TRUE)

summary(glm.HCRobbery,corr = FALSE)

X <- glm.HCRobbery$x


## Newton Raphson
glarmamod <- glarma(Y, X, phiLags = c(1, 2, 3), type = "Bin", method = "NR",
                    residuals = "Pearson", maxit = 100, grad = 1e-6)
glarmamod
summary(glarmamod)


## LRT, Wald tests.
likTests(glarmamod)

## Residuals and Fit Plots
plot.glarma(glarmamod)

Example output

Call:
glm(formula = Y ~ Step.2001 + I(Feb + Mar + Apr + May + Jun + 
    Jul) + I(Aug + Sep + Oct + Nov + Dec), family = binomial(link = logit), 
    data = RobberyConvict, na.action = na.omit, x = TRUE)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.5435  -0.8978   0.1682   0.8011   2.6497  

Coefficients:
                                     Estimate Std. Error z value Pr(>|z|)    
(Intercept)                          -0.25685    0.15605  -1.646  0.09978 .  
Step.2001                             0.82315    0.08135  10.119  < 2e-16 ***
I(Feb + Mar + Apr + May + Jun + Jul) -0.37228    0.16188  -2.300  0.02146 *  
I(Aug + Sep + Oct + Nov + Dec)       -0.50068    0.16549  -3.025  0.00248 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 327.48  on 149  degrees of freedom
Residual deviance: 212.12  on 146  degrees of freedom
AIC: 684.79

Number of Fisher Scoring iterations: 4


Call: glarma(y = Y, X = X, type = "Bin", method = "NR", residuals = "Pearson", 
    phiLags = c(1), maxit = 100, grad = 1e-06)

GLARMA Coefficients:
     phi_1  
0.08175172  

Linear Model Coefficients:
                         (Intercept)                             Step.2001  
                          -0.2746835                             0.8220330  
I(Feb + Mar + Apr + May + Jun + Jul)        I(Aug + Sep + Oct + Nov + Dec)  
                          -0.3567715                            -0.5003871  

Degrees of Freedom: 149 Total (i.e. Null);  145 Residual
Null Deviance: 327.4831 
Residual Deviance: 198.9089 
AIC: 680.676 


Call: glarma(y = Y, X = X, type = "Bin", method = "NR", residuals = "Pearson", 
    phiLags = c(1), maxit = 100, grad = 1e-06)

Pearson Residuals:
    Min       1Q   Median       3Q      Max  
-2.4456  -0.8159   0.1337   0.7301   2.4798  

GLARMA Coefficients:
      Estimate Std.Error z-ratio Pr(>|z|)  
phi_1  0.08175   0.03298   2.479   0.0132 *

Linear Model Coefficients:
                                     Estimate Std.Error z-ratio Pr(>|z|)    
(Intercept)                          -0.27468   0.15711  -1.748  0.08041 .  
Step.2001                             0.82203   0.09571   8.589  < 2e-16 ***
I(Feb + Mar + Apr + May + Jun + Jul) -0.35677   0.15981  -2.232  0.02559 *  
I(Aug + Sep + Oct + Nov + Dec)       -0.50039   0.16333  -3.064  0.00219 ** 

    Null deviance: 327.48  on 149  degrees of freedom
Residual deviance: 198.91  on 145  degrees of freedom
AIC: 680.676 

Number of Newton Raphson iterations: 4

LRT and Wald Test:
Alternative hypothesis: model is a GLARMA process
Null hypothesis: model is a GLM with the same regression structure
          Statistic p-value  
LR Test       6.110  0.0134 *
Wald Test     6.144  0.0132 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

          Statistic p-value  
LR Test      6.1104 0.01344 *
Wald Test    6.1443 0.01318 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


Call:
glm(formula = Y ~ Trend + Trend.2001 + I(Feb + Mar + Apr + May + 
    Jun) + Dec, family = binomial(link = logit), data = RobberyConvict, 
    na.action = na.omit, x = TRUE)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.5072  -0.9098   0.1133   0.7891   3.6679  

Coefficients:
                               Estimate Std. Error z value Pr(>|z|)    
(Intercept)                    -0.04210    0.05394  -0.781 0.435016    
Trend                           0.17272    0.01214  14.224  < 2e-16 ***
Trend.2001                     -0.17600    0.02145  -8.206 2.29e-16 ***
I(Feb + Mar + Apr + May + Jun)  0.14669    0.03950   3.713 0.000204 ***
Dec                             0.38137    0.07292   5.230 1.69e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 584.85  on 149  degrees of freedom
Residual deviance: 247.87  on 145  degrees of freedom
AIC: 956.57

Number of Fisher Scoring iterations: 4


Call: glarma(y = Y, X = X, type = "Bin", method = "NR", residuals = "Pearson", 
    phiLags = c(1, 2, 3), maxit = 100, grad = 1e-06)

GLARMA Coefficients:
     phi_1       phi_2       phi_3  
0.01229693  0.04177964  0.02805464  

Linear Model Coefficients:
                   (Intercept)                           Trend  
                    -0.0351250                       0.1707481  
                    Trend.2001  I(Feb + Mar + Apr + May + Jun)  
                    -0.1721641                       0.1549353  
                           Dec  
                     0.3914685  

Degrees of Freedom: 149 Total (i.e. Null);  142 Residual
Null Deviance: 584.8472 
Residual Deviance: 231.9971 
AIC: 948.9794 


Call: glarma(y = Y, X = X, type = "Bin", method = "NR", residuals = "Pearson", 
    phiLags = c(1, 2, 3), maxit = 100, grad = 1e-06)

Pearson Residuals:
    Min       1Q   Median       3Q      Max  
-3.0349  -0.9824   0.1392   0.7787   3.4460  

GLARMA Coefficients:
      Estimate Std.Error z-ratio Pr(>|z|)   
phi_1  0.01230   0.01523   0.807  0.41956   
phi_2  0.04178   0.01494   2.796  0.00517 **
phi_3  0.02805   0.01403   2.000  0.04553 * 

Linear Model Coefficients:
                               Estimate Std.Error z-ratio Pr(>|z|)    
(Intercept)                    -0.03512   0.07270  -0.483 0.629008    
Trend                           0.17075   0.01668  10.236  < 2e-16 ***
Trend.2001                     -0.17216   0.02911  -5.915 3.32e-09 ***
I(Feb + Mar + Apr + May + Jun)  0.15494   0.04462   3.472 0.000516 ***
Dec                             0.39147   0.07074   5.534 3.12e-08 ***

    Null deviance: 584.85  on 149  degrees of freedom
Residual deviance: 232.00  on 142  degrees of freedom
AIC: 948.9794 

Number of Newton Raphson iterations: 6

LRT and Wald Test:
Alternative hypothesis: model is a GLARMA process
Null hypothesis: model is a GLM with the same regression structure
          Statistic p-value   
LR Test       13.59 0.00352 **
Wald Test     11.97 0.00749 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

          Statistic  p-value   
LR Test      13.591 0.003518 **
Wald Test    11.968 0.007495 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

glarma documentation built on May 2, 2019, 6:33 a.m.