glarmaSimModel: Create a glarma simulation model

View source: R/glarmaSimModel.R

glarmaSimModelR Documentation

Create a glarma simulation model

Description

Defines a glarma model for input to the function glarmaSim.

Usage

glarmaSimModel(X, beta, offset = NULL, type = "Poi", mBin = NULL,
               alpha = NULL, residType = "Pearson",
               phiLags = NULL, phi = NULL,
               thetaLags = NULL, theta = NULL)

Arguments

X

Matrix; the explanatory variables. A vector of ones should be added to the data matrix as the first column for the beta of the intercept.

beta

Numeric vector; values of the regression coefficients.

offset

Either NULL or a numeric vector of length equal to the number of cases.

type

Character; the count distribution. Possible values are "Poi" (Poisson), "Bin" (binomial) and "NegBin" (negative binomial). The default is the Poisson distribution.

mBin

Numeric vector of length equal to the forecast horizon; only for the binomial case, the number of trials for each time point.

alpha

Numeric; for the negative binomial case, the shape parameter for glm.nb

residType

Character; the type of residuals to be used. Possible values are "Pearson" and "Score", and for the binomial distribution "Identity" is also allowed. The default is to use Pearson residuals.

phiLags

Numeric vector; AR orders.

phi

Numeric vector; values for the corresponding AR orders.

thetaLags

Numeric vector; MA orders.

theta

Numeric vector; values for the corresponding MA orders.

Value

Creates a list object of type "glarmaSimModel" with the same list elements as in the function call.

Author(s)

"David J. Scott" <d.scott@auckland.ac.nz> and "William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au>

See Also

See glarmaSim.

Examples

### Test glarmaSimModel
data("Polio")
y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])
glarmamod <- glarma(y, X, thetaLags = c(1,2,5), type = "Poi", method = "FS",
                    residuals = "Pearson", maxit = 100, grad = 1e-6)
summary(glarmamod)
PolioModel <- glarmaSimModel(X, beta = coef.glarma(glarmamod, type = "beta"),
                             phiLags = glarmamod$phiLags,
                             phi = rep(0.1, length(glarmamod$phiLags)),
                             thetaLags = glarmamod$thetaLags,
                             theta = rep(0.1, length(glarmamod$thetaLags)),
                             type = glarmamod$type,
                             residType = glarmamod$residType)
str(PolioModel)
coef.glarma(glarmamod, type = "ARMA")
PolioModel <- extractGlarmaSimModel(glarmamod)
str(PolioModel)


glarma documentation built on April 4, 2025, 12:32 a.m.