View source: R/glarmaSimModel.R
glarmaSimModel | R Documentation |
Defines a glarma model for input to the function glarmaSim
.
glarmaSimModel(X, beta, offset = NULL, type = "Poi", mBin = NULL,
alpha = NULL, residType = "Pearson",
phiLags = NULL, phi = NULL,
thetaLags = NULL, theta = NULL)
X |
Matrix; the explanatory variables. A vector of ones should be
added to the data matrix as the first column for the |
beta |
Numeric vector; values of the regression coefficients. |
offset |
Either |
type |
Character; the count distribution. Possible values are
|
mBin |
Numeric vector of length equal to the forecast horizon; only for the binomial case, the number of trials for each time point. |
alpha |
Numeric; for the negative binomial case, the shape
parameter for |
residType |
Character; the type of residuals to be used. Possible
values are |
phiLags |
Numeric vector; AR orders. |
phi |
Numeric vector; values for the corresponding AR orders. |
thetaLags |
Numeric vector; MA orders. |
theta |
Numeric vector; values for the corresponding MA orders. |
Creates a list object of type "glarmaSimModel" with the same list elements as in the function call.
"David J. Scott" <d.scott@auckland.ac.nz> and "William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au>
See glarmaSim
.
### Test glarmaSimModel
data("Polio")
y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])
glarmamod <- glarma(y, X, thetaLags = c(1,2,5), type = "Poi", method = "FS",
residuals = "Pearson", maxit = 100, grad = 1e-6)
summary(glarmamod)
PolioModel <- glarmaSimModel(X, beta = coef.glarma(glarmamod, type = "beta"),
phiLags = glarmamod$phiLags,
phi = rep(0.1, length(glarmamod$phiLags)),
thetaLags = glarmamod$thetaLags,
theta = rep(0.1, length(glarmamod$thetaLags)),
type = glarmamod$type,
residType = glarmamod$residType)
str(PolioModel)
coef.glarma(glarmamod, type = "ARMA")
PolioModel <- extractGlarmaSimModel(glarmamod)
str(PolioModel)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.