glarmaSim | R Documentation |
Simulate a single instance of a glarma process specified by an object
of class glarmaSim
.
glarmaSim(object)
object |
An object of class "glarmaSim" either constructed to be
of that class or derived from a fitted glarma model using the function
|
An object of class "glarmaSimulation"
.
"William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au> and "David J Scott" <d.scott@auckland.ac.nz>
glarmaSim
### Polio data
data("Polio")
y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])
glarmamod <- glarma(y, X, thetaLags = c(1,2,5), type = "Poi", method = "FS",
residuals = "Pearson", maxit = 100, grad = 1e-6)
PolioModel <- extractGlarmaSimModel(glarmamod)
str(PolioModel)
par(mfrow = c(3,1))
sim <- glarmaSim(PolioModel)
ts.plot(sim$W)
ts.plot(sim$mu)
ts.plot(sim$Y)
### Example with Oxford-Cambridge Boat Race
data(OxBoatRace)
y1 <- OxBoatRace$Camwin
n1 <- rep(1, length(OxBoatRace$Year))
Y <- cbind(y1, n1 - y1)
X <- cbind(OxBoatRace$Intercept, OxBoatRace$Diff)
colnames(X) <- c("Intercept", "Weight Diff")
oxcamglm <- glm(Y ~ Diff + I(Diff^2),
data = OxBoatRace,
family = binomial(link = "logit"), x = TRUE)
summary(oxcamglm)
X <- oxcamglm$x
glarmamod <- glarma(Y, X, thetaLags = c(1, 2), type = "Bin", method = "NR",
residuals = "Pearson", maxit = 100, grad = 1e-6)
str(glarmamod)
BoatRaceModel <- glarmaSimModel(X, beta = coef.glarma(glarmamod, type = "beta"),
phiLags = glarmamod$phiLags,
phi = rep(0.1, length(glarmamod$phiLags)),
thetaLags = glarmamod$thetaLags,
theta = c(0.34,0.56),
type = glarmamod$type, m = n1,
residType = glarmamod$residType)
str(BoatRaceModel)
BoatRaceModel <- extractGlarmaSimModel(glarmamod)
str(BoatRaceModel)
par(mfrow = c(3,1))
sim <- glarmaSim(BoatRaceModel)
ts.plot(sim$W)
ts.plot(sim$mu)
ts.plot(sim$Y)
### Example with asthma data, negative binomial
data(Asthma)
y <- Asthma[, 1]
X <- as.matrix(Asthma[, 2:16])
## Pearson Residuals, Newton Raphson, Negative Binomial
## Initial value of the shape parameter take to be zero
glarmamod <- glarma(y, X, thetaLags = 7, type = "NegBin", method = "NR",
residuals = "Pearson", alphaInit = 0,
maxit = 100, grad = 1e-6)
summary(glarmamod)
str(glarmamod)
AsthmaModel <- glarmaSimModel(X, beta = coef.glarma(glarmamod, type = "beta"),
phiLags = glarmamod$phiLags,
phi = rep(0.1, length(glarmamod$phiLags)),
thetaLags = glarmamod$thetaLags,
theta = c(0.044),
type = glarmamod$type, alpha = 37.19,
residType = glarmamod$residType)
str(AsthmaModel)
AsthmaModel <- extractGlarmaSimModel(glarmamod)
str(AsthmaModel)
par(mfrow = c(3,1))
sim <- glarmaSim(AsthmaModel)
ts.plot(sim$W)
ts.plot(sim$mu)
ts.plot(sim$Y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.