Nothing
### Program to simulate a single sample path of length n
### based on a glarma model object of class glarmaModel
###
glarmaSim <- function(object){
if(!is(object, "glarmaSimModel"))
stop("Model not of glarmaSimModel class")
n <- NROW(X)
## Regression and offset part of glarma simulation model
beta <- object$beta
X <- object$X
offset <- object$offset
if(is.null(offset)) eta <- X %*% beta else eta <- X %*% beta + offset
## for Binomial need number of trials
m <- object$mBin
## glarma recursion part
phiLags <- object$phiLags
phi <- object$phi
thetaLags <- object$thetaLags
theta <- object$theta
p <- length(phiLags)
q <- length(thetaLags)
## initialize arrays of sample size plus initializing conditions
## assume zero initilizing for glarma part e_t and Z_t
if ((p + q) > 0) {
mpq <- max(phiLags[p], thetaLags[q])
}
nmpq <- n + mpq
e <- array(0, nmpq)
Z <- array(0, nmpq)
W <- array(0, nmpq)
mu <- array(0, nmpq)
sig2 <- array(0, nmpq)
Y <- array(0, nmpq)
for (time in 1:n){
tmpq <- time + mpq
if (p > 0) {
for (i in 1:p) {
Z[tmpq] <- Z[tmpq] + phi[i] * (Z + e)[tmpq - phiLags[i]]
}}
if (q > 0) {
for (i in 1:q) {
Z[tmpq] <- Z[tmpq] + theta[i] * e[tmpq - thetaLags[i]]
}
}
W[tmpq] <- eta[time] + Z[tmpq]
if(object$type == "Bin") {
pi[tmpq] <- 1/(1 + exp(-W[tmpq]))
mu[tmpq] <- m[time]*pi[tmpq]
sig2[tmpq] <- mu[tmpq]*(1 - pi[tmpq])
Y[tmpq] <- rbinom(1, m[time], 1/(1 + exp(-W[tmpq])))
if(object$residType == "Pearson"){
e[tmpq] <- (Y[tmpq] - mu[tmpq])/sig2[tmpq]^0.5
}
if(object$residType == "Score"){
e[tmpq] <- (Y[tmpq] - mu[tmpq])/sig2[tmpq]
}
if(object$residType == "Identity"){
e[tmpq] <- (Y[tmpq] - mu[tmpq])
}
}
if(object$type == "Poi") {
mu[tmpq] <- exp(W[tmpq])
Y[tmpq] <- rpois(1, exp(W[tmpq]))
if(object$residType == "Pearson"){
e[tmpq] <- (Y[tmpq] - mu[tmpq])/mu[tmpq]^0.5
}
if(object$residType == "Score"){
e[tmpq] <- (Y[tmpq] - mu[tmpq])/mu[tmpq]
}
if(object$residType == "Identity"){
e[tmpq] <- (Y[tmpq] - mu[tmpq])
}
}
if(object$type == "NegBin") {
alpha <- object$alpha
mu[tmpq] <- exp(W[tmpq])
sig2[tmpq] <- mu[tmpq] + mu[tmpq]^2/(alpha^2)
Y[tmpq] <- rnbinom(1, mu = mu[tmpq], size = alpha)
if(object$residType == "Pearson"){
e[tmpq] <- (Y[tmpq] - mu[tmpq])/sig2[tmpq]^0.5
}
if(object$residType == "Score"){
e[tmpq] <- (Y[tmpq] - mu[tmpq])/sig2[tmpq]
}
if(object$residType == "Identity"){
e[tmpq] <- (Y[tmpq] - mu[tmpq])
}
}
}
out <- list(Y = Y[mpq + 1:n], eta = eta, W = W[mpq + 1:n],
e = e[mpq + 1:n], mu = mu[mpq + 1:n], model = object)
class(out) <- "glarmaSimulation"
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.