Nothing
#' Plot for a \code{\link{glmm.hp}} object
#'
#' @param x A \code{\link{glmm.hp}} object.
#' @param plot.perc Logical;if TRUE, the bar plot (based on ggplot2 package) of the percentage to individual effects of variables or groups towards total explained variation, the default is FALSE to show plot with original individual effects.
#' @param color Color of variables.
#' @param n Integer; which marginal R2 in output of r.squaredGLMM to plot.
#' @param dig Integer; number of decimal places in Venn diagram.
#' @param ... unused
#' @return a ggplot object
#' @author {Jiangshan Lai} \email{lai@njfu.edu.cn}
#' @export
#' @examples
#' library(MuMIn)
#' library(lme4)
#' mod1 <- lmer(Sepal.Length ~ Petal.Length + Petal.Width +(1 | Species), data = iris)
#' a <- glmm.hp(mod1)
#' plot(a)
#' mod3 <- lm(Sepal.Length ~ Petal.Length+Petal.Width,data = iris)
#' plot(glmm.hp(mod3,type="R2"))
#' plot(glmm.hp(mod3,commonality=TRUE),color = c("#8DD3C7", "#FFFFB3"))
plot.glmmhp <- function(x, plot.perc = FALSE, color = NULL,n = 1,dig = 4,...){
if (!inherits(x, "glmmhp")){
stop("x should be the output of glmm.hp()")
}
if(x$type=="hierarchical.partitioning")
{if (plot.perc){
tips3 = data.frame(variable = rownames(x[[n+1]]),
value = as.numeric(x[[n+1]][, "I.perc(%)"]))
gg = ggplot2::ggplot(tips3, ggplot2::aes(x = stats::reorder(variable,-value), y = value)) + ggplot2::geom_bar(stat = "identity") +
ggplot2::theme_minimal() + ggplot2::labs(x = "Variables", y = "% Individual effect to Rsquare (%I)") + ggplot2::theme(axis.text = element_text(size = 10)) + ggplot2::theme(axis.title = element_text(size = 13))+ggplot2::labs(title =paste(names(x)[n+1]))
} else {
tips2 = data.frame(variable = rownames(x[[n+1]]),
value = as.numeric(x[[n+1]][, "Individual"]))
gg = ggplot2::ggplot(tips2, ggplot2::aes(x = stats::reorder(variable,-value), y = value)) + ggplot2::geom_bar(stat = "identity") +
ggplot2::theme_minimal() + ggplot2::labs(x = "Variables", y = "Individual effect") + ggplot2::theme(axis.text = element_text(size = 10)) + ggplot2::theme(axis.title = element_text(size = 13))+ggplot2::labs(title =paste(names(x)[n+1]))
}
return(gg)
}
if(x$type=="commonality.analysis")
{
Var.part <- as.data.frame(x[[n+1]])
#Var.part <- Var.part[which(Var.part$Fractions >=cutoff), ]
Var.part$Fractions <- round(Var.part$Fractions,dig)
nvar <- length(x$variables)
Constrained <- Var.part$Fractions[2^nvar]
if (!nvar%in% 2:4)
stop("Venn diagram supports only 2-4 variables")
else if (nvar == 2)
Var <- Var.part$Fractions[1:3]
else if (nvar == 3)
Var <- Var.part$Fractions[c(1:4, 6, 5, 7)]
else if (nvar == 4)
Var <- Var.part$Fractions[c(1:5, 7, 6, 8:10, 12, 11, 14, 13, 15)]
vegan::showvarparts(part = nvar, bg = color, Xnames = x$variables, labels = as.character(c(Var, 1-Constrained)))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.