R/printfunctions.R

Defines functions random.effects fixed.effects confint.mcml residuals.mcml fitted.mcml predict.mcml vcov.mcml formula.mcml family.mcml logLik.mcml coef.mcml summary.mcml print.mcml

Documented in coef.mcml confint.mcml family.mcml fitted.mcml fixed.effects formula.mcml logLik.mcml predict.mcml print.mcml random.effects residuals.mcml summary.mcml vcov.mcml

#' Prints an mcml fit output
#' 
#' Print method for class "`mcml`"
#' 
#' @param x an object of class "`mcml`" as a result of a call to MCML, see \link[glmmrBase]{Model}
#' @param ... Further arguments passed from other methods
#' @details 
#' `print.mcml` tries to replicate the output of other regression functions, such
#' as `lm` and `lmer` reporting parameters, standard errors, and z- and p- statistics.
#' The z- and p- statistics should be interpreted cautiously however, as generalised
#' linear miobjected models can suffer from severe small sample biases where the effective
#' sample size relates more to the higher levels of clustering than individual observations.
#' 
#' Parameters `b` are the mean function beta parameters, parameters `cov` are the
#' covariance function parameters in the same order as `$covariance$parameters`, and
#' parameters `d` are the estimated random effects.
#' @return No return value, called for side effects.
#' @method print mcml
#' @export
print.mcml <- function(x, ...){
  digits <- 4
  cat(ifelse(x$method%in%c("mcem","mcnr","saem"),
             "Markov chain Monte Carlo Maximum Likelihood Estimation\nAlgorithm: ",
             "Maximum Likelihood Estimation with Laplace Approximation\nAlgorithm: "),
      ifelse(x$method%in%c("nloptim","nr"),ifelse(x$method=="nr","Newton-Raphson","BOBYQA"),
             ifelse(x$method=="mcem","Markov Chain Expectation Maximisation",
                                        ifelse(x$method=="mcnr","Markov Chain Newton-Raphson",
                                               "Stochastic Approximation Expectation Maximisation"))),
      ifelse(x$reml,"with REML\n","\n"))
  
  cat("\nFixed effects formula :",x$mean_form)
  cat("\nCovariance function formula: ",x$cov_form)
  cat("\nFamily: ",x$family,", Link function:",x$link)
  setype <- switch(
    x$se,
    "gls" = "GLS",
    "robust" = "Robust",
    "kr" = "Kenward Roger",
    "kr2" = "Kenward Roger (improved)",
    "bw" = "GLS with between-within correction",
    "bwrobust" = "Robust with between-within correction",
    "box" = "Modified Box correction",
    "sat" = "Satterthwaite"
  )
  cat("\nStandard error: ",setype,"\n")
  if(x$method%in%c("mcem","mcnr"))cat("\nNumber of Monte Carlo simulations per iteration: ",x$m," with tolerance ",x$tol,"\n\n")
  
  dim1 <- dim(x$re.samps)[1]
  pars <- x$coefficients[1:(length(x$coefficients$par)-dim1),2:7]
  colnames(pars) <- c("Estimate","Std. Err.","z value","p value","2.5% CI","97.5% CI")
  if(x$se == "bw" || x$se == "bwrobust" || x$se == "kr" || x$se == "kr2" || x$se == "sat")colnames(pars)[3] <- "t value"
  if(x$se == "box")colnames(pars)[3] <- "F value"
  rnames <- x$coefficients$par[1:(length(x$coefficients$par)-dim1)]
  if(any(duplicated(rnames))){
    did <- unique(rnames[duplicated(rnames)])
    for(i in unique(did)){
      rnames[rnames==i] <- paste0(rnames[rnames==i],".",1:length(rnames[rnames==i]))
    }
  }
  rownames(pars) <- rnames
  total_vars <- x$P+x$Q
  if(x$var_par_family)total_vars <- total_vars + 1
  if(x$se %in% c("kr","bw","bwrobust","kr2","box","sat"))pars$DoF <- c(x$dof, rep(NA,total_vars - x$P))
  pars <- apply(pars,2,round,digits = digits)
  if(x$se %in% c("kr","bw","bwrobust","kr2","box","sat")){
    colrange <- 1:7
  } else if(x$se == "box"){
    colrange <- c(1:4,7)
  } else {
    colrange <- 1:6
  }
  
  cat("\nRandom effects: \n")
  print(pars[(x$P+1):(total_vars),c(1,2)])
  
  cat("\nFixed effects: \n")
  print(pars[1:x$P,colrange])
  
  cat("\ncAIC: ",round(x$aic,digits))
  cat("\nApproximate R-squared: Conditional: ",round(x$Rsq[1],digits)," Marginal: ",round(x$Rsq[2],digits))
  cat("\nLog-likelihood: ",round(x$logl,digits))
  if(!x$converged)cat("\nMCML ALGORITHM DID NOT CONVERGE!")
  cat("\n")
  return(invisible(pars))
}

#' Summarises an mcml fit output
#' 
#' Summary method for class "`mcml`"
#' 
#' @param object an object of class "`mcml`" as a result of a call to MCML, see \link[glmmrBase]{Model}
#' @param ... Further arguments passed from other methods
#' @details 
#' `print.mcml` tries to replicate the output of other regression functions, such
#' as `lm` and `lmer` reporting parameters, standard errors, and z- and p- statistics.
#' The z- and p- statistics should be interpreted cautiously however, as generalised
#' linear miobjected models can suffer from severe small sample biases where the effective
#' sample size relates more to the higher levels of clustering than individual observations.
#' 
#' Parameters `b` are the mean function beta parameters, parameters `cov` are the
#' covariance function parameters in the same order as `$covariance$parameters`, and
#' parameters `d` are the estimated random effects.
#' @return A list with random effect names and a data frame with random effect mean and credible intervals
#' @method summary mcml
#' @export
summary.mcml <- function(object,...){
  digits <- 2
  pars <- print(object)
  ## summarise random effects
  dfre <- data.frame(Mean = round(apply(object$re.samps,2,mean),digits = digits), 
                     lower = round(apply(object$re.samps,2,function(i)stats::quantile(i,0.025)),digits = digits),
                     upper = round(apply(object$re.samps,2,function(i)stats::quantile(i,0.975)),digits = digits))
  colnames(dfre) <- c("Estimate","2.5% CI","97.5% CI")
  cat("Random effects estimates\n")
  print(dfre)
  ## add in model fit statistics
  return(invisible(list(coefficients = pars,re.terms = dfre)))
}


#' Extracts fixed effect coefficients from a mcml object
#' 
#' Extracts the fitted fixed effect coefficients from an `mcml` object returned from a call of `MCML` or `LA` in the \link[glmmrBase]{Model} class.
#' @param object An `mcml` model fit.
#' @param ... Further arguments passed from other methods
#' @return A named vector.
#' @method coef mcml
#' @export
coef.mcml <- function(object,...){
  pars <- object$coefficients$est[1:object$P]
  names(pars) <- object$coefficients$par[1:object$P]
  return(pars)
}

#' Extracts the log-likelihood from an mcml object
#' 
#' Extracts the final log-likelihood value from an mcml object returned from call of `MCML` or `LA` in the \link[glmmrBase]{Model} class. The fitting algorithm estimates
#' the fixed effects, random effects, and covariance parameters all separately. The log-likelihood is separable in the fixed and covariance parameters, so one can return 
#' the log-likelihood for either component, or the overall log-likelihood.
#' @param object An `mcml` model fit.
#' @param fixed Logical whether to include the log-likelihood value from the fixed effects.
#' @param covariance Logical whether to include the log-likelihood value from the covariance parameters.
#' @param ... Further arguments passed from other methods
#' @return An object of class `logLik`. If both `fixed` and `covariance` are FALSE then it returns NA.
#' @method logLik mcml
#' @export
logLik.mcml <- function(object, fixed = TRUE, covariance = TRUE, ...){
  ll <- 0
  if(fixed) ll <- ll + object$logl
  if(covariance) ll <- ll + object$logl_theta
  if(!fixed & !covariance) ll <- NA
  class(ll) <- "logLik"
  attr(ll,"df") <- I(object$var_par_family)*1 + ifelse(fixed,object$P,0) + ifelse(covariance,object$Q,0)
  attr(ll,"nobs") <- ifelse(fixed,length(object$model_data$y),ifelse(covariance,nrow(object$re.samps),0))
  attr(ll,"nall") <- ifelse(fixed,length(object$model_data$y),ifelse(covariance,nrow(object$re.samps),0))
  return(ll)
}

#' Extracts the family from a `mcml` object. 
#' 
#' Extracts the \link[stats]{family} from a `mcml` object.
#' @param object A `mcml` object.
#' @param ... Further arguments passed from other methods
#' @return A \link[stats]{family} object.
#' @method family mcml
#' @export
family.mcml <- function(object,...){
  return(do.call(object$family, list(link = object$link)))
}

#' Extracts the formula from a `mcml` object. 
#' 
#' Extracts the \link[stats]{formula} from a `mcml` object. Separate formulae are 
#' specified for the fixed and random effects in the model, either of which can be
#' returned. The complete formula is available from the generating `Model` object as 
#' `Model$formula` or `formula(Model)`
#' @param x A `mcml` object.
#' @param ... Further arguments passed from other methods
#' @return A \link[stats]{formula} object.
#' @method formula mcml
#' @export
formula.mcml <- function(x,...){
  return(as.formula(paste0("~",x$mean_form,x$cov_form)))
}

#' Extract the Variance-Covariance matrix for a `mcml` object
#' 
#' Returns the calculated variance-covariance matrix for a `mcml` object. The generating Model object 
#' has several methods to calculate the variance-convaariance matrix. For the standard GLS information matrix see
#' `Model$information_matrix()`. Small sample corrections 
#' can be accessed directly from the generating Model using `Model$small_sample_correction()`. The varaince-covariance 
#' matrix including the random effects can be accessed using `Model$information_matrix(include.re = TRUE)`.
#' @param object A `mcml` object.
#' @param ... Further arguments passed from other methods
#' @return A variance-covariance matrix.
#' @method vcov mcml
#' @export
vcov.mcml <- function(object,...){
  M <- object$vcov
  rownames(M) <- colnames(M)  <- object$coefficients$par[1:object$P]
  return(object$vcov)
}

#' Predict from a `mcml` object
#' 
#' Predictions cannot be generated directly from an `mcml` object, rather new predictions should be
#' generated using the original `Model`. A message is printed to the user.
#' @param object A `mcml` object.
#' @param ... Further arguments passed from other methods
#' @return Nothing. Called for effects.
#' @method predict mcml
#' @export
predict.mcml <- function(object,...){
  message("Predictions cannot be generated directly from a fitted mcml object. See Model$predict() to generate new predictions, or predict().")
}

#' Fitted values from a `mcml` object
#' 
#' Fitted values should not be generated directly from an `mcml` object, rather fitted values should be
#' generated using the original `Model`. A message is printed to the user. 
#' @param object A `mcml` object.
#' @param ... Further arguments passed from other methods
#' @return Nothing, called for effects, unless `override` is TRUE, when it will return a vector of fitted values.
#' @method fitted mcml
#' @export
fitted.mcml <- function(object,...){
  message("Fitted values cannot be generated directly from a fitted mcml object. See Model$fitted() to generate fitted values, or fitted()")
}

#' Residuals method for a `mcml` object
#' 
#' Calling residuals on an `mcml` object directly is not recommended. This function will currently only generate marginal residuals.
#' It will generate a new `Model` object internally, thus copying 
#' all the data, which is not ideal for larger models. The preferred method is to call residuals on either the `Model` 
#' object or using `Model$residuals()`, both of which will also generate conditional residuals.
#' @param object A `mcml` object.
#' @param type Either "standardized", "raw" or "pearson"
#' @param ... Further arguments passed from other methods
#' @return A matrix with either one column is conditional is false, or with number of columns corresponding 
#' to the number of MCMC samples.
#' @method residuals mcml
#' @export
residuals.mcml <- function(object, type, ...){
  message("Calling this function on an mcml object is not recommended as it will copy all the data including MCMC samples. Using the original Model object or its method Model$residuals() is recommended instead.")
  mod <- Model$new(model_fit = object)
  mod$update_y(object$model_data$y)
  return(mod$residuals(type,conditional = FALSE))
}

#' Fixed effect confidence intervals for a `mcml` object
#' 
#' Returns the computed confidence intervals for a `mcml` object.  
#' @param object A `mcml` object.
#' @param ... Further arguments passed from other methods
#' @return A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. 
#' @method confint mcml
#' @export
confint.mcml <- function(object, ...){
  out <- object$coefficients[1:object$P,c("lower","upper")]
  out <- as.matrix(out)
  colnames(out) <- c("2.5%","97.5%")
  return(out)
}

#' Extracts the fixed effect estimates
#' 
#' Extracts the fixed effect estimates from an mcml object returned from call of `MCML` or `LA` in the \link[glmmrBase]{Model} class.
#' @param object An `mcml` model fit.
#' @return A named, numeric vector of fixed-effects estimates.
#' @export
fixed.effects <- function(object){
  if(!is(object,"mcml"))stop("Requires mcml model fit")
  fixed <- object$coefficients$est[1:object$P]
  names(fixed) <- object$coefficients$par[1:object$P]
  return(fixed)
}

#' Extracts the random effect estimates
#' 
#' Extracts the random effect estimates or samples from an mcml object returned from call of `MCML` or `LA` in the \link[glmmrBase]{Model} class.
#' @param object An `mcml` model fit.
#' @return A matrix of dimension (number of fixed effects ) x (number of MCMC samples). For Laplace approximation, the number of "samples" equals one.
#' @export
random.effects <- function(object){
  if(!is(object,"mcml"))stop("Requires mcml model fit")
  return(object$re.samps)
}

Try the glmmrBase package in your browser

Any scripts or data that you put into this service are public.

glmmrBase documentation built on April 3, 2025, 10:44 p.m.