Nothing
##' @title Conditional Kolmogorov test statistic for the joint distribution of
##' (X,Y)
##' @description This class inherits from [TestStatistic] and implements a
##' function to calculate the test statistic (and x-y-values that can be used
##' to plot the underlying process).
##'
##' The process underlying the test statistic is given in Andrews (1997)
##' \doi{10.2307/2171880} and defined by \deqn{\nu_n(x,y) = \frac{1}{\sqrt{n}}
##' \sum_{i=1}^n \left(I_{\{Y_i \le y\}} - F(y|\hat{\vartheta}_n, X_i) \right)
##' I_{\{X_i \le x\}},\quad (x,y) \in R^{p+1}.}{(see formula given in paper).}
##'
##' @importFrom R6 R6Class
##'
##' @export
##'
##' @examples
##' # Create an example dataset
##' n <- 100
##' x <- cbind(runif(n), rbinom(n, 1, 0.5))
##' model <- NormalGLM$new()
##' y <- model$sample_yx(x, params=list(beta=c(2,3), sd=1))
##' data <- dplyr::tibble(x = x, y = y)
##'
##' # Fit the correct model
##' model$fit(data, params_init=list(beta=c(1,1), sd=3), inplace = TRUE)
##'
##' # Print value of test statistic and plot corresponding process
##' ts <- CondKolmXY$new()
##' ts$calc_stat(data, model)
##' print(ts)
##' plot(ts)
##'
##' # Fit a wrong model
##' model2 <- NormalGLM$new(linkinv = function(u) {u+10})
##' model2$fit(data, params_init=list(beta=c(1,1), sd=3), inplace = TRUE)
##'
##' # Print value of test statistic and plot corresponding process
##' ts2 <- CondKolmXY$new()
##' ts2$calc_stat(data, model2)
##' print(ts2)
##' plot(ts2)
CondKolmXY <- R6::R6Class(
classname = "CondKolmXY",
inherit = TestStatistic,
public = list(
#' @description Calculate the value of the test statistic for given data
#' and a model to test for.
#'
#' @param data `data.frame()` with columns x and y containing the data
#' @param model [ParamRegrModel] to test for, already fitted to the data
#'
#' @return The modified object (`self`), allowing for method chaining.
#'
#' @export
calc_stat = function(data, model) {
# check for correct shape of data and definedness of model params
checkmate::assert_data_frame(data)
checkmate::assert_names(names(data), must.include = c("x", "y"))
checkmate::assert_class(model, "ParamRegrModel")
if (anyNA(model$get_params())) {
stop("Model first needs to be fitted to the data.")
}
# compute sum_{i=1}^n (1{Yi<=Yj} - F(Yj|theta,Xi)) 1{Xi<=Xj} for each j
n <- length(data$y)
x <- as.matrix(data$x)
proc <- 1 / sqrt(n) * sapply(seq(1, n), function(j) {
sum(((data$y <= data$y[j]) - model$F_yx(data$y[j], x)) *
(apply(x, 1, function(r) {all(r <= x[j,])})))
})
# set private fields accordingly
private$value <- max(abs(proc))
private$plot.x <- seq(1, n)
private$plot.y <- proc
invisible(self)
}
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.