Nothing
gaussianNoiseParamInit <-
function(noise, y) {
if (nargs() > 1) {
noise$bias = colMeans(y)
noise$numProcess = dim(y)[2]
} else {
noise$bias = matrix(0, 1, noise$numProcess)
}
noise$sigma2 = 1e-6
noise$transforms <- list(list(index=c(noise$numProcess+1), type="positive"))
#noise.transforms.index = noise.numProcess+1;
noise$nParams = 1 + noise$numProcess
## Can handle missing values?
noise$missing = 0;
## Noise model leads to constant value of beta.
noise$spherical = 1
return (noise)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.