Nothing
gpOptions <-
function (approx="ftc") {
options = list()
options$approx = approx
## Select type of optimiser.
options$optimiser = "SCG"
## Set to true to learn output scales.
options$learnScales = FALSE
## Set to true to scale outputs to variance 1.
options$scale2var1 = FALSE
## Set to true to optimise beta.
options$optimiseBeta = FALSE
if (approx != "ftc")
options$optimiseBeta = TRUE
## Set to a given mean function to have a mean function.
options$meanFunction = list()
## Options structure for mean function options.
options$meanFunctionOptions = list()
## Set to 1 if output processes have a shared variance.
options$isSpherical = TRUE
## Set to 1 if there is data missing in the target matrix.
options$isMissingData = FALSE
if (options$approx == "ftc") {
## bog-standard kernel.
## R version of the kern field is a more structured than in MATLAB.
options$kern = list(type="cmpnd",comp=list("rbf", "bias", "white"))
options$numActive = 0
options$beta = list()
} else if (options$approx %in% c('fitc', 'pitc', 'dtc', 'dtcvar')) {
options$kern = list(type="cmpnd",comp=list("rbf", "bias", "white"))
options$numActive = 100
options$beta = 1e+3
## Option to fix the inducing variables to other latent points.
options$fixInducing = 0
options$fixIndices = list()
}
options$computeS = FALSE
return (options)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.