Nothing
gpuCor <- function(x, y = NULL, use = "everything", method = "pearson") {
x <- as.matrix(x)
nx <- ncol(x)
size <- nrow(x)
if(is.null(y)) {
y <- x
} else {
y <- as.matrix(y)
}
ny <- ncol(y)
n <- nx * ny
methods <- c("pearson", "kendall")
method <- pmatch(method, methods, -1)
if(is.na(method)) {
stop("invalid correlation method")
}
if(method == -1) {
stop("ambiguous correlation method")
}
uses <- c("everything", "pairwise.complete.obs")
use <- pmatch(use, uses, -1)
if(is.na(use)) {
stop("invalid correlation method")
}
if(use == -1) {
stop("ambiguous correlation method")
}
if(methods[method] == "pearson") {
answer <- .C("rpmcc", NAOK=TRUE,
as.integer(use - 1), as.single(x), as.integer(nx),
as.single(y), as.integer(ny), as.integer(size),
pairs = single(n), corr = single(n), ts = single(n),
PACKAGE='gputools')
pairs <- t(matrix(answer$pairs, ny, nx))
corr <- t(matrix(answer$corr, ny, nx))
ts <- t(matrix(answer$ts, ny, nx))
return(list(coefficients = corr, ts = ts, pairs = pairs))
} else if(methods[method] == "kendall") {
if(uses[use] != "everything") {
warning("NA handling for Kendall's is not yet supported. Defaulting to using everything. Sorry for any inconvenience.")
}
filename <- system.file("cuda", 'kendall.cu', package = 'gputools')
kernel_src <- readChar(filename, file.info(filename)$size)
a <- .C("RgpuKendall",
as.single(x), nx, as.single(y), ny,
size, result = double(nx*ny),
kernel_src,
PACKAGE = "gputools")
pairs <- matrix(size, nx, ny)
return(list(coefficients = matrix(a$result, nx, ny), pairs = pairs))
} else {
stop("This correlation method is not yet supported. Sorry for any inconvenience.")
}
}
gpuTtest <- function(goodPairs, coeffs) {
goodPairs <- as.single(goodPairs)
coeffs <- as.single(coeffs)
n <- as.integer(length(goodPairs))
.C("rtestT", NAOK = TRUE,
goodPairs, coeffs, n,
results = single(n),
PACKAGE = 'gputools')$results
}
#gpuSignifFilter <- function(olddata) {
# rows <- as.integer(ncol(olddata))
# olddata <- as.single(olddata)
# newdata <- .C("gSignifFilter", NAOK = TRUE, PACKAGE = "gputools",
# olddata, numRows = rows,
# results = single(rows*6))
# numRows <- newdata$numRows
# results <- newdata$results[1:(numRows*6)]
# if(numRows != 0) {
# dim(results) <- c(6, numRows)
# results <- t(results)
# } else {
# results <- NULL
# }
# results
#}
#
#pickGpu <- function(device = 0) {
# device <- as.integer(device)
# .C("rsetDevice", PACKAGE = "gputools", device)
#}
#
#getGpu <- function() {
# .C("rgetDevice", PACKAGE = "gputools", device = integer(1))
# device
#}
#
#formatPmccInput <- function(queryList, numImages, mins, maxes) {
# images <- as.integer(queryList$IMAGESERIESID)
# xcoords <- as.integer(queryList$X)
# ycoords <- as.integer(queryList$Y)
# zcoords <- as.integer(queryList$Z)
# mins <- as.integer(mins)
# maxes <- as.integer(maxes)
#
# xmax <- maxes[1]
# xmin <- mins[1]
# nx <- 1+abs(xmax - xmin)
#
# ymax <- maxes[2]
# ymin <- mins[2]
# ny <- 1+abs(ymax - ymin)
#
# zmax <- maxes[3]
# zmin <- mins[3]
# nz <- 1+abs(zmax - zmin)
#
# size <- nx*ny*nz
# mins <- as.integer(c(xmin, ymin, zmin))
# maxes <- as.integer(c(xmax, ymax, zmax))
#
# evs <- as.single(queryList$EV)
# numrows <- as.integer(length(images))
# numimages <- as.integer(numImages)
#
# output <- single(numimages*size)
# output[1:length(output)] <- NA
# output <- .C("rformatInput", NAOK = TRUE, PACKAGE="gputools",
# images, xcoords, ycoords,
# zcoords, mins, maxes, evs, numrows, numimages, output = output)$output
# output <- matrix(output, size, numimages)
#}
#
# formatPmccOutput <- function(imagesA, imagesB, correlations, ts, pairCounts,
# structureid = 0, corrCut = -1.0, pairCut = 0)
# {
# imagesA <- as.integer(imagesA)
# nA <- as.integer(length(imagesA))
#
# imagesB <- as.integer(imagesB)
# nB <- as.integer(length(imagesB))
#
# pairCounts <- as.integer(pairCounts)
#
# structureid <- as.integer(structureid)
# pairCut <- as.integer(pairCut)
#
# corrCut <- as.double(corrCut)
# correlations <- as.double(correlations)
# ts <- as.double(ts)
#
# output <- .C("rformatOutput", NAOK = TRUE, PACKAGE="gputools",
# imagesA, nA, imagesB, nB,
# structureid, corrCut, pairCut,
# correlations, ts, pairCounts,
# results = double(nA*nB*6), numRows = integer(1))
#
# numRows <- output$numRows
# results <- output$results[1:(numRows*6)]
# if(numRows != 0) {
# dim(results) <- c(6, numRows)
# results <- t(results)
# } else {
# results <- NULL
# }
# results
# }
#
#hostSignifFilter <- function(olddata) {
# rows <- as.integer(ncol(olddata))
# olddata <- as.double(olddata)
# newdata <- .C("rSignifFilter", NAOK = TRUE, PACKAGE="gputools",
# olddata, numRows = rows,
# results = double(rows*6))
# numRows <- newdata$numRows
# results <- newdata$results[1:(numRows*6)]
# if(numRows != 0) {
# dim(results) <- c(6, numRows)
# results <- t(results)
# } else {
# results <- NULL
# }
# results
#}
#
#hostTtest <- function(goodPairs, coeffs) {
# n <- as.integer(length(goodPairs))
# goodPairs <- as.single(goodPairs)
# coeffs <- as.single(coeffs)
#
# .C("rhostT", NAOK = TRUE, PACKAGE = "gputools", goodPairs, coeffs, n,
# results = single(n))$results
#}
#
#hostKendall <- function(samplesA, samplesB) {
# na <- as.integer(ncol(samplesA))
# nb <- as.integer(ncol(samplesB))
# numSamples <- as.integer(nrow(samplesA))
# a <- .C("RpermHostKendall", PACKAGE = "gputools",
# as.single(samplesA), na, as.single(samplesB),
# nb, numSamples, result = double(na*nb))
# a$result
# matrix(a$result, na, nb)
#}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.