Nothing
#' @title Poisson Pseudo Maximum Likelihood (PPML)
#'
#' @description \code{ppml} estimates gravity models in their
#' multiplicative form via Poisson Pseudo Maximum Likelihood.
#'
#' @details \code{ppml} is an estimation method for gravity models
#' belonging to generalized linear models. It is estimated via \code{\link[stats]{glm}} using the quasipoisson
#' distribution and a log-link. \code{ppml} is presented in \insertCite{Santos2006;textual}{gravity}.
#'
#' For similar functions, utilizing the multiplicative form via the log-link,
#' but different distributions, see \code{\link[gravity]{gpml}}, \code{\link[gravity]{nls}},
#' and \code{\link[gravity]{nbpml}}.
#'
#' \code{ppml} estimation can be used for both, cross-sectional as well as
#' panel data. The function is designed to be consistent with the
#' results from the Stata function \code{ppml} written by \insertCite{Santos2006;textual}{gravity}.
#'
#' The function \code{ols} was therefore tested for cross-sectional data. For the use with panel data
#' no tests were performed. Therefore, it is up to the user to ensure that the functions can be applied
#' to panel data.
#'
#' Depending on the panel dataset and the variables -
#' specifically the type of fixed effects -
#' included in the model, it may easily occur that the model is not computable.
#' Also, note that by including bilateral fixed effects such as country-pair
#' effects, the coefficients of time-invariant observables such as distance
#' can no longer be estimated.
#'
#' Depending on the specific model, the code of the
#' respective function may has to be changed in order to exclude the distance
#' variable from the estimation.
#'
#' At the very least, the user should take special
#' care with respect to the meaning of the estimated coefficients and variances
#' as well as the decision about which effects to include in the estimation.
#' When using panel data, the parameter and variance estimation of the models
#' may have to be changed accordingly.
#'
#' For a comprehensive overview of gravity models for panel data
#' see \insertCite{Egger2003;textual}{gravity}, \insertCite{Gomez-Herrera2013;textual}{gravity} and
#' \insertCite{Head2010;textual}{gravity} as well as the references therein.
#'
#' @param dependent_variable (Type: character) name of the dependent variable. This variable is used as
#' the dependent variable in the estimation.
#'
#' @param distance (Type: character) name of the distance variable that should be taken as the key independent variable
#' in the estimation. The distance is logged automatically when the function is executed.
#'
#' @param additional_regressors (Type: character) names of the additional regressors to include in the model (e.g. a dummy
#' variable to indicate contiguity). Unilateral metric variables such as GDPs can be added but those variables have to be
#' logged first. Interaction terms can be added.
#'
#' Write this argument as \code{c(contiguity, common currency, ...)}. By default this is set to \code{NULL}.
#'
#' @param robust (Type: logical) whether robust fitting should be used. By default this is set to \code{FALSE}.
#'
#' @param data (Type: data.frame) the dataset to be used.
#'
#' @param ... Additional arguments to be passed to the function.
#'
#' @references
#' For more information on gravity models, theoretical foundations and
#' estimation methods in general see
#'
#' \insertRef{Anderson1979}{gravity}
#'
#' \insertRef{Anderson2001}{gravity}
#'
#' \insertRef{Anderson2010}{gravity}
#'
#' \insertRef{Baier2009}{gravity}
#'
#' \insertRef{Baier2010}{gravity}
#'
#' \insertRef{Feenstra2002}{gravity}
#'
#' \insertRef{Head2010}{gravity}
#'
#' \insertRef{Head2014}{gravity}
#'
#' \insertRef{Santos2006}{gravity}
#'
#' and the citations therein.
#'
#' See \href{https://sites.google.com/site/hiegravity/}{Gravity Equations: Workhorse, Toolkit, and Cookbook} for gravity datasets and Stata code for estimating gravity models.
#'
#' For estimating gravity equations using panel data see
#'
#' \insertRef{Egger2003}{gravity}
#'
#' \insertRef{Gomez-Herrera2013}{gravity}
#'
#' and the references therein.
#'
#' @examples
#' # Example for CRAN checks:
#' # Executable in < 5 sec
#' library(dplyr)
#' data("gravity_no_zeros")
#'
#' # Choose 5 countries for testing
#' countries_chosen <- c("AUS", "CHN", "GBR", "BRA", "CAN")
#' grav_small <- filter(gravity_no_zeros, iso_o %in% countries_chosen)
#'
#' fit <- ppml(
#' dependent_variable = "flow",
#' distance = "distw",
#' additional_regressors = c("rta", "iso_o", "iso_d"),
#' data = grav_small
#' )
#' @return
#' The function returns the summary of the estimated gravity model as an
#' \code{\link[stats]{glm}}-object.
#'
#' @seealso \code{\link[stats]{glm}}, \code{\link[lmtest]{coeftest}},
#' \code{\link[sandwich]{vcovHC}}
#'
#' @export
ppml <- function(dependent_variable,
distance,
additional_regressors,
robust = FALSE,
data, ...) {
# Checks ------------------------------------------------------------------
stopifnot(is.data.frame(data))
stopifnot(is.character(dependent_variable), dependent_variable %in% colnames(data), length(dependent_variable) == 1)
stopifnot(is.character(distance), distance %in% colnames(data), length(distance) == 1)
if (!is.null(additional_regressors)) {
stopifnot(is.character(additional_regressors), all(additional_regressors %in% colnames(data)))
}
# Discarding unusable observations -------------------------------------------
d <- discard_unusable(data, distance)
# Transforming data, logging distances ---------------------------------------
d <- log_distance(d, distance)
# Transforming data, renaming dependent variable -----------------------------
d <- rename(d, y_ppml = !!sym(dependent_variable))
# Model ----------------------------------------------------------------------
if (!is.null(additional_regressors)) {
vars <- paste(c("dist_log", additional_regressors), collapse = " + ")
} else {
vars <- "dist_log"
}
form <- stats::as.formula(paste("y_ppml", "~", vars))
model_ppml <- stats::glm(form,
data = d,
family = stats::quasipoisson(link = "log")
)
if (robust == TRUE) {
model_ppml_robust <- model_ppml
robust_coefficients <- lmtest::coeftest(
model_ppml,
vcov = sandwich::vcovHC(model_ppml, type = "HC1", ...)
)
model_ppml_robust$coefficients <- robust_coefficients[seq_len(length(rownames(robust_coefficients))), ]
}
if (robust == FALSE) {
model_ppml$call <- form
class(model_ppml) <- c(class(model_ppml), "gravity_ppml")
return(model_ppml)
} else {
model_ppml_robust$call <- form
class(model_ppml_robust) <- c(class(model_ppml_robust), "gravity_ppml")
return(model_ppml_robust)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.