Nothing
#' Green Space Clustering with K-Means and Tile Layer Control in Leaflet
#'
#' This function performs K-means clustering on green spaces based on their area size and visualizes the results on a Leaflet map.
#' Users must specify the number of clusters. The function includes a layer control for switching between different basemap tiles.
#'
#' @param green_areas_data List containing green areas data (obtained from get_osm_data function or similar).
#' @param num_clusters Integer number of clusters to divide the green spaces into.
#' @return A Leaflet map object displaying clustered green spaces with layer control for basemap tiles.
#' @importFrom sf st_as_sf st_transform st_area st_crs
#' @importFrom leaflet addTiles addProviderTiles addPolygons addLayersControl addLegend leaflet colorFactor
#' @importFrom stats kmeans
#' @importFrom RColorBrewer brewer.pal
#' @examples
#' \donttest{
#' # Create example green_areas_data
#' library(sf)
#' green_areas <- st_sf(
#' id = 1:5,
#' geometry = st_sfc(
#' st_polygon(list(rbind(c(0, 0), c(0, 1), c(1, 1), c(1, 0), c(0, 0)))),
#' st_polygon(list(rbind(c(1, 1), c(1, 2), c(2, 2), c(2, 1), c(1, 1)))),
#' st_polygon(list(rbind(c(2, 2), c(2, 3), c(3, 3), c(3, 2), c(2, 2)))),
#' st_polygon(list(rbind(c(3, 3), c(3, 4), c(4, 4), c(4, 3), c(3, 3)))),
#' st_polygon(list(rbind(c(4, 4), c(4, 5), c(5, 5), c(5, 4), c(4, 4))))
#' ),
#' crs = 4326 # Assign a CRS (WGS 84)
#' )
#' green_areas_data <- list(osm_polygons = green_areas)
#' # Run the clustering function
#' map <- green_space_clustering(green_areas_data, num_clusters = 2)
#' map # to display the map
#' }
#' @export
green_space_clustering <- function(green_areas_data, num_clusters) {
if (!is.list(green_areas_data) || !all(c("osm_polygons") %in% names(green_areas_data))) {
stop("Invalid green_areas_data format. It should be a list containing 'osm_polygons'.")
}
# Transform the green areas to an equal-area projection to calculate the area accurately
green_areas <- sf::st_as_sf(green_areas_data$osm_polygons)
green_areas_transformed <- sf::st_transform(green_areas, crs = sf::st_crs("ESRI:54009"))
green_areas$area <- as.numeric(sf::st_area(green_areas_transformed))
# Area data needs to be in a matrix or data frame
area_data <- data.frame(area = green_areas$area)
# Run kmeans with the number of clusters specified by the user
kmeans_result <- stats::kmeans(area_data, centers = num_clusters, nstart = 25)
green_areas$cluster <- kmeans_result$cluster
# Define colors for clusters using a color palette
pal <- leaflet::colorFactor(RColorBrewer::brewer.pal(ifelse(num_clusters <= 8, num_clusters, 8), "Dark2"), domain = green_areas$cluster)
# Create a Leaflet map with base tiles
map <- leaflet::leaflet(green_areas) %>%
leaflet::addTiles(group = "OpenStreetMap") # Default OSM tiles
# Add the clustered green areas to the map
map <- map %>%
leaflet::addPolygons(
fillColor = ~pal(cluster),
fillOpacity = 0.5,
color = "#444444",
weight = 1,
smoothFactor = 0.5,
popup = ~paste("Cluster:", cluster, "<br>Area:", formatC(area, format = "f", big.mark = ",", digits = 0), "m\u00B2"),
group = "Clusters"
)
# Add different tile providers
map <- map %>%
leaflet::addProviderTiles("CartoDB.Positron", group = "Positron")
# Add layer control
map <- map %>%
leaflet::addLayersControl(
baseGroups = c("OpenStreetMap", "Positron"),
overlayGroups = c("Clusters"),
options = leaflet::layersControlOptions(collapsed = FALSE)
)
# Add a legend for the clusters
map <- map %>%
leaflet::addLegend(
position = "bottomright",
pal = pal,
values = ~cluster,
title = "Cluster",
opacity = 1
)
# Return the map
return(map)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.