R/fit_growthmodel.R

Defines functions fit_growthmodel

Documented in fit_growthmodel

#' Fit Nonlinear Parametric Growth Model
#'
#' Determine maximum growth rates by fitting nonlinear models.
#'
#'
#' @param FUN function of growth model to be fitted.
#' @param p named vector of start parameters and initial values of the growth model.
#' @param time vector of independent variable.
#' @param y vector of dependent variable (concentration of organisms).
#' @param lower lower bound of the parameter vector (optional).
#' @param upper upper bound of the parameter vector (optional).
#' @param which vector of parameter names that are to be fitted.
#' @param method character vector specifying the optimization algorithm (see \code{\link{modFit}}).
#' @param transform fit model to non-transformed or log-transformed data.
#' @param control A list of control parameters for the optimizers. See Details.
#' @param \dots additional parameters passed to the optimizer.
#'
#' @return object  with parameters of the fit.
#'
#' @details This function calls \code{modFit} from package \pkg{FME}.
#' Syntax of control parameters and available options may differ, depending
#' on the optimizer used, except \code{control=list(trace=...)} that switches
#'   tracing on and off for all methods and is either \code{TRUE}, or \code{FALSE},
#'   or an integer value like 0, 1, 2, 3, depending on the optimizer.
#'
#' @family fitting functions
#' @seealso \code{\link{modFit}} about constrained fitting of models to data
#'
#' @examples
#'
#' data(bactgrowth)
#' splitted.data <- multisplit(bactgrowth, c("strain", "conc", "replicate"))
#'
#' ## get one element either by index or by name
#' dat <- splitted.data[[1]]
#' dat <- splitted.data[["D:0:1"]]
#'
#' p <- c(y0 = 0.01, mumax = 0.2, K = 0.1)
#'
#' ## unconstraied fitting
#' fit1 <- fit_growthmodel(FUN = grow_logistic, p = p, dat$time, dat$value)
#' coef(fit1)
#' summary(fit1)
#'
#' ## optional box-constraints
#' lower <- c(y0 = 1e-6, mumax = 0,   K = 0)
#' upper <- c(y0 = 0.05, mumax = 5,   K = 0.5)
#' fit1 <- fit_growthmodel(
#'   FUN = grow_logistic, p = p, dat$time, dat$value,
#'   lower = lower, upper = upper)
#'
#' plot(fit1, log="y")
#'
#' @export fit_growthmodel
#'
fit_growthmodel <- function(FUN, p, time, y, lower = -Inf, upper = Inf,
                            which = names(p),
                            method = "Marq", transform=c("none", "log"),
                            control = NULL, ...) {

  transform <- match.arg(transform)

  #if (any(duplicated(time)))
  #  stop("x variable must not contain duplicated values")

  ## split parameter vector in fitted and non-fitted
  parnames <- names(p)

  if (length(union(parnames, c(parnames, which))) > length(parnames))
    warning("Names in 'which' that do not occur in p")

  fixed.p  <- p[setdiff(parnames, which)]
  parms    <- p[intersect(parnames, which)]

  ## todo: check case of lower and upper = 1
  if (length(fixed.p) & (length(lower) > 1)) {
    lower = lower[intersect(parnames, which)]
  }
  if (length(fixed.p) & (length(upper) > 1)) {
    upper = upper[intersect(parnames, which)]
  }

  if(!length(parms)) stop("No fitting parameters given. 'which' is empty or wrong")

  ## create data frame with names matching between model and data
  if (transform == "log") {
    #obs <- data.frame(time = time, y=y, log_y = log(y)) ## wrong!
    obs <- data.frame(time = time, log_y = log(y))
  } else {
    obs <- data.frame(time = time, y = y)
  }

  ## handle trace. this control parameter is named inconsistently between the
  ## methods, so we try to make this unique. other controls are even more diverse

  ## optim-methods: "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"
  ## "trace" as integer: leave as is

  ## nlminb, "Port": trace as integer: leave as is

  ## nlm, "Newton": print.level as integer
  if (method %in% c("Newton"))
    control <- renameListElement(control, "trace", "print.level")

  ## nls.lm, "Marq": nprint as integer
  if (method %in% c("Marq"))
    control <- renameListElement(control, "trace", "nprint")

  ## minqa, "bobyqa": iprint can be 0, 1, 2, 3
  if (method %in% c("bobyqa"))
    control <- renameListElement(control, "trace", "iprint")

  ## FME, "Pseudo": verbose = TRUE/FALSE
  if (method %in% c("Pseudo"))
    control <- renameListElement(control, "trace", "verbose")

  ## fit model; log-transformed data need box constraints
  ## todo: redefine functions to allow unconstrained log-transformed parameters
  fit <- modFit(f = cost, p = parms, FUN = FUN, obs = obs,
                lower = lower, upper = upper,
                method = method, fixed.p = fixed.p, control = control, transform = transform, ...)

  parms <- coef(fit)
  out.fit <- FUN(obs$time, c(parms, fixed.p))


  ## Note r2 in case of log-transformed values
  if (transform == "log") {
    yobs <- obs$log_y
  } else {
    yobs <- obs$y
  }

  r2  <- 1 - var(residuals(fit))/var(yobs)
  RSS <- sum(residuals(fit)^2)
  #cat(coef(fit), "r2=", r2, "\n")

  #return(list(fit=fit, out = out.fit, coef = coef(fit), obs=obs, RSS=RSS, r2=r2))

  ## par contains fitted and fixed parameters in the original order
  obj <- new("nonlinear_fit", FUN = FUN, fit = fit, obs = obs,
             par = c(parms, fixed.p)[parnames], rsquared = r2)
  invisible(obj)
}

Try the growthrates package in your browser

Any scripts or data that you put into this service are public.

growthrates documentation built on Nov. 3, 2020, 1:07 a.m.