Nothing
#' Proportional odds model log-likelihood
#'
#' Computes the log-likelihood given an ordered category response vector and corresponding GLM linear predictor values.
#'
#' @param y ordered factor or disjunctive table representation recording an ordinal variable with 3 or more categories.
#' @param x data.frame (or matrix) containing predictor values.
#' @param mod \code{polr} object containing the estimated proportional odds model.
#' @details
#' If \code{x} and \code{y} are equal to the data on which \code{mod} has been trained, this function returns the same result as the default \code{logLink} function. If \code{x} and \code{y} are new, the function returns the log-likelihood of the new data under the trained model.
#' The log-likelihood equation is based on Agresti (2002, p. 192).
#' @return A list containing:
#' - \code{ll} an atomic vector of length 1 containing the log-likelihood value.
#' - \code{sc}, a numeric matrix containing the systematic component for the input \code{x} and \code{mod}.
#' @author Edoardo Costantini, 2022
#' @references
#'
#' Agresti, A. (2012). Categorical data analysis (Vol. 792). John Wiley & Sons.
#'
#' @export
LL_cumulative <- function(y, x, mod) {
# Compute the GLM systematic component
sc <- compute_sc(
mod = mod,
predictors = x
)
# convert to numbers if needed
if (is.factor(y)) {
y <- FactoMineR::tab.disjonctif(y)
}
# Transform into cumulative probabilities
cumsum <- cbind(0, exp(sc) / (1 + exp(sc)), 1)
# Define a storing matrix
shelf <- matrix(nrow = nrow(cumsum), ncol = ncol(cumsum) - 1)
# Compute individual contributions
for (i in 1:nrow(cumsum)) {
# i <- 1
for (j in 2:ncol(cumsum)) {
# j <- 2
shelf[i, j - 1] <- y[i, j - 1] * log(cumsum[i, j] - cumsum[i, j - 1])
}
}
# And then I can compute the log-likelihood
ll <- sum(sum(shelf))
# Return
list(
ll = ll,
sc = sc
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.