Nothing
Code
as.data.frame(modify_column_hide(tbl_diff, all_stat_cols()))
Output
**Characteristic** **Difference** **95% CI** **p-value**
1 Marker Level (ng/mL) 0.20 -0.05, 0.44 0.12
2 Age -0.44 -4.6, 3.7 0.8
Code
as.data.frame(modify_column_hide(add_difference(tbl_summary(select(trial, trt,
response, grade), by = trt, percent = "row")), all_stat_cols()))
Condition
Warning:
The `add_difference()` results for categorical variables may not compatible with `tbl_summary(percent = c('cell', 'row'))`.
i Use column percentages instead, `tbl_summary(percent = 'column')`.
Output
**Characteristic** **Difference** **95% CI** **p-value**
1 Tumor Response -4.2% -18%, 9.9% 0.6
2 Unknown <NA> <NA> <NA>
3 Grade 0.07 -0.20, 0.35 <NA>
4 I <NA> <NA> <NA>
5 II <NA> <NA> <NA>
6 III <NA> <NA> <NA>
Code
as.data.frame(modify_column_hide(tbl_test.args, all_stat_cols()))
Output
**Characteristic** **Difference** **95% CI** **p-value**
1 var_t.test -0.44 -4.6, 3.7 0.8
2 var_t.test_dots -0.44 -4.6, 3.7 0.8
3 var_wilcox.test -1.0 -5.0, 4.0 0.7
4 var_wilcox.test_dots -1.0 -5.0, 4.0 0.7
5 var_prop.test -4.2% -18%, 9.9% 0.6
6 var_prop.test_dots -4.2% -16%, 100% 0.7
7 var_ancova -0.44 -4.6, 3.7 0.8
8 var_cohens_d -0.03 -0.32, 0.25 <NA>
9 var_hedges_g -0.03 -0.31, 0.25 <NA>
10 var_smd -0.03 -0.32, 0.25 <NA>
Code
as.data.frame(modify_column_hide(tbl_groups, all_stat_cols()))
Output
**Characteristic** **Difference** **95% CI** **p-value**
1 age_ancova_lme4 -0.57 -4.0, 2.8 <NA>
2 age_paired_t_test -0.85 -4.4, 2.7 0.6
3 age_paired_cohens_d -0.05 -0.26, 0.16 <NA>
4 age_paired_hedges_g -0.05 -0.26, 0.16 <NA>
Code
tbl1
Output
# A tibble: 4 x 6
label stat_1 stat_2 estimate conf.low p.value
<chr> <chr> <chr> <chr> <chr> <chr>
1 Age 47 (15) 47 (14) -0.44 -4.6, 3.7 0.8
2 Marker Level (ng/mL) 1.02 (0.89) 0.82 (0.83) 0.20 -0.05, 0.44 0.12
3 Tumor Response 29% 34% -4.2% -18%, 9.9% 0.6
4 Patient Died 53% 59% -5.8% -21%, 9.0% 0.5
Code
as.data.frame(modify_column_hide(t1, all_stat_cols()))
Output
**Characteristic** **Difference** **95% CI** **p-value**
1 mpg <NA> <NA> <NA>
2 hp <NA> <NA> <NA>
Code
tbl
Output
label stat_1 stat_2 estimate conf.low
1 Age 46 (37, 60) 48 (39, 56) -0.03 -0.32, 0.25
2 Tumor Response 28 (29%) 33 (34%) -0.09 -0.37, 0.19
3 Grade <NA> <NA> 0.07 -0.20, 0.35
4 I 35 (36%) 33 (32%) <NA> <NA>
5 II 32 (33%) 36 (35%) <NA> <NA>
6 III 31 (32%) 33 (32%) <NA> <NA>
Code
as.data.frame(modify_column_hide(res, all_stat_cols()))
Output
**Characteristic** **Adjusted Difference** **95% CI** **p-value**
1 Age -0.42 -4.5, 3.7 0.8
2 Tumor Response -4.7% -18%, 8.4% 0.5
Code
as.data.frame(modify_column_hide(add_difference(mutate(mtcars, .by = am, id = dplyr::row_number(),
am = factor(am, levels = c(0, 1))) %>% tbl_summary(by = am, include = mpg),
test = ~"paired.t.test", group = id), all_stat_cols()))
Message
The following warning was returned in `add_difference()` for variable "mpg"
! Some observations included in the stratified summary statistics were omitted from the comparison due to unbalanced missingness within group.
Output
**Characteristic** **Difference** **95% CI** **p-value**
1 mpg -7.0 -10, -3.6 <0.001
Code
as.data.frame(modify_column_hide(add_difference(tbl_summary(mutate(mtcars, .by = am,
id = dplyr::row_number(), am = factor(am, levels = c(1, 0))), by = am,
include = mpg), test = ~"paired.t.test", group = id), all_stat_cols()))
Message
The following warning was returned in `add_difference()` for variable "mpg"
! Some observations included in the stratified summary statistics were omitted from the comparison due to unbalanced missingness within group.
Output
**Characteristic** **Difference** **95% CI** **p-value**
1 mpg 7.0 3.6, 10 <0.001
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.