| custom_tidiers | R Documentation | 
Collection of tidiers that can be utilized in gtsummary. See details below.
tidy_standardize(
  x,
  exponentiate = FALSE,
  conf.level = 0.95,
  conf.int = TRUE,
  ...,
  quiet = FALSE
)
tidy_bootstrap(
  x,
  exponentiate = FALSE,
  conf.level = 0.95,
  conf.int = TRUE,
  ...,
  quiet = FALSE
)
tidy_robust(
  x,
  exponentiate = FALSE,
  conf.level = 0.95,
  conf.int = TRUE,
  vcov = NULL,
  vcov_args = NULL,
  ...,
  quiet = FALSE
)
pool_and_tidy_mice(x, pool.args = NULL, ..., quiet = FALSE)
tidy_gam(x, conf.int = FALSE, exponentiate = FALSE, conf.level = 0.95, ...)
tidy_wald_test(x, tidy_fun = NULL, vcov = stats::vcov(x), ...)
x | 
 (  | 
exponentiate | 
 (scalar   | 
conf.level | 
 (scalar   | 
conf.int | 
 (scalar   | 
... | 
 Arguments passed to method; 
  | 
quiet | 
|
vcov, vcov_args | 
  | 
pool.args | 
 (named   | 
tidy_fun | 
 (  | 
These tidiers are passed to tbl_regression() and tbl_uvregression() to
obtain modified results.
tidy_standardize() tidier to report standardized coefficients. The
parameters
package includes a wonderful function to estimate standardized coefficients.
The tidier uses the output from parameters::standardize_parameters(), and
merely takes the result and puts it in broom::tidy() format.
tidy_bootstrap() tidier to report bootstrapped coefficients. The
parameters
package includes a wonderful function to estimate bootstrapped coefficients.
The tidier uses the output from parameters::bootstrap_parameters(test = "p"), and
merely takes the result and puts it in broom::tidy() format.
tidy_robust() tidier to report robust standard errors, confidence intervals,
and p-values. The parameters
package includes a wonderful function to calculate robust standard errors, confidence intervals, and p-values
The tidier uses the output from parameters::model_parameters(), and
merely takes the result and puts it in broom::tidy() format. To use this
function with tbl_regression(), pass a function with the arguments for
tidy_robust() populated.
pool_and_tidy_mice() tidier to report models resulting from multiply imputed data
using the mice package. Pass the mice model object before the model results
have been pooled. See example.
tidy_wald_test() tidier to report Wald p-values, wrapping the
aod::wald.test() function.
Use this tidier with add_global_p(anova_fun = tidy_wald_test)
# Example 1 ----------------------------------
mod <- lm(age ~ marker + grade, trial)
tbl_stnd <- tbl_regression(mod, tidy_fun = tidy_standardize)
tbl <- tbl_regression(mod)
tidy_standardize_ex1 <-
  tbl_merge(
    list(tbl_stnd, tbl),
    tab_spanner = c("**Standardized Model**", "**Original Model**")
  )
# Example 2 ----------------------------------
# use "posthoc" method for coef calculation
tbl_regression(mod, tidy_fun = \(x, ...) tidy_standardize(x, method = "posthoc", ...))
# Example 3 ----------------------------------
# Multiple Imputation using the mice package
set.seed(1123)
pool_and_tidy_mice_ex3 <-
  suppressWarnings(mice::mice(trial, m = 2)) |>
  with(lm(age ~ marker + grade)) |>
  tbl_regression()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.