Description Usage Arguments Value References See Also Examples
The function compute the optimal bandwidth for a given geographically weighted elliptical regression using three differents methods: cross-validation, AIC and spatial validation. This optimal bandwidth optimzing the selected function.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
formula |
regression model formula of a formula |
family |
a description of the error distribution to be used in the model (see |
data |
a SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp. |
approach |
specified by CV for cross-validation approach, by AIC for corrected Akaike information criterion approach or by MI for spatial-validation approach. |
kernel |
function chosen as follows: gaussian: wgt = exp(-.5*(vdist/bw)^2); exponential: wgt = exp(-vdist/bw); bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise; tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise; boxcar: wgt=1 if dist < bw, wgt=0 otherwise. |
adaptive |
if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance). |
spdisp |
if TRUE, by default, the dispersion parameter vary geographically in estimation process. |
dispersion |
an optional fixed value for dispersion parameter. |
p |
the power of the Minkowski distance, default is 2 (Euclidean distance). |
theta |
an angle in radians to rotate the coordinate system, default is 0 |
longlat |
if TRUE, great circle distances will be calculated. |
dMat |
a pre-specified distance matrix, it can be calculated by the function |
returns the bandwidth optimization value.
Brunsdon, C., Fotheringham, A. S. and Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical analysis, 28(4), 281-298. doi: 10.1111/j.1538-4632.1996.tb00936.x
Cysneiros, F. J. A., Paula, G. A., and Galea, M. (2007). Heteroscedastic symmetrical linear models. Statistics & probability letters, 77(11), 1084-1090. doi: 10.1016/j.spl.2007.01.012
Fang, K. T., Kotz, S. and NG, K. W. (1990, ISBN:9781315897943). Symmetric Multivariate and Related Distributions. London: Chapman and Hall.
gwer
, elliptical
, family.elliptical
1 2 3 4 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.