Description Usage Arguments Value References See Also Examples
This function obtains the values of different residuals types and calculates the diagnostic measures for the fitted geographically weighted elliptical regression model.
1 | gwer.multiscale.diag(object, ...)
|
object |
an object with the result of the fitted multiscale geographically weighted elliptical regression model. |
... |
arguments to be used to form the default control argument if it is not supplied directly. |
Returns a list of diagnostic arrays:
ro |
ordinal residuals. |
rr |
response residuals. |
rp |
pearson residuals. |
rs |
studentized residuals. |
rd |
deviance residuals. |
dispersion |
coefficient of dispersion parameter. |
Hat |
the hat matrix. |
h |
main diagonal of the hat matrix. |
GL |
generalized leverage. |
GLbeta |
generalized leverage of location parameters estimation. |
GLphi |
generalized leverage of dispersion parameters estimation. |
DGbeta |
cook distance of location parameters estimation. |
DGphi |
cook distance of dispersion parameters estimation. |
Cic |
normal curvature for case-weight perturbation. |
Cih |
normal curvature for scale perturbation. |
Lmaxr |
local influence on response (additive perturbation in responce). |
Lmaxc |
local influence on coefficients (additive perturbation in predictors). |
Brunsdon, C., Fotheringham, A. S. and Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical analysis, 28(4), 281-298. doi: 10.1111/j.1538-4632.1996.tb00936.x
Galea, M., Paula, G. A., and Cysneiros, F. J. A. (2005). On diagnostics in symmetrical nonlinear models. Statistics & Probability Letters, 73(4), 459-467. doi: 10.1016/j.spl.2005.04.033
1 2 3 4 5 6 7 | data(georgia, package = "spgwr")
fit.formula <- PctBach ~ TotPop90 + PctRural + PctFB + PctPov
gwer.bw.t <- bw.gwer(fit.formula, data = gSRDF, family = Student(3), adapt = TRUE)
msgwr.fit.t <- gwer.multiscale(fit.formula, family = Student(3), data = gSRDF,
bws0 = rep(gwer.bw.t, 5), hatmatrix = TRUE,
adaptive = TRUE)
gwer.multiscale.diag(msgwr.fit.t)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.