Description Usage Arguments Value References See Also Examples
This function generate diagnostic measures plots for the fitted multiscale geographically weighted elliptical regression models.
1 2 3 4 5 6 7 8 9 10 |
object |
an object with the result of the fitted multiscale geographically weighted elliptical regression models. |
mgwerdiag |
object list containing the diagnostic measures. By default it is obtained from the object, but can be calculated using |
which |
an optional numeric value with the number of only plot that must be returned. |
subset |
an optional numeric vector specifying a subset of observations to be used in the fitting process. |
iden |
a logical value used to identify observations. If |
labels |
a optional string vector specifying a labels plots. |
ret |
a logical value used to return the diagnostic measures computing. If |
... |
graphics parameters to be passed to the plotting routines. |
Return an interactive menu with eleven options to make plots. This menu contains the follows graphics: 1: plot: All. 2: plot: Response residual against fitted values. 3: plot: Response residual against index. 4: plot: Quantile residual against fitted values. 5: plot: Quantile residual against index. 6: plot: QQ-plot of response residuals. 7: plot: QQ-plot of Quantile residuals. 8: plot: Generalized leverage. 9: plot: Total local influence index plot for response perturbation. 10: plot: Total local influence index plot scale perturbation. 11: plot: Total local influence index plot case-weight perturbation.
Brunsdon, C., Fotheringham, A. S. and Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical analysis, 28(4), 281-298. doi: 10.1111/j.1538-4632.1996.tb00936.x
Galea, M., Paula, G. A., and Cysneiros, F. J. A. (2005). On diagnostics in symmetrical nonlinear models. Statistics & Probability Letters, 73(4), 459-467. doi: 10.1016/j.spl.2005.04.033
gwer.multiscale
, gwer.multiscale.diag
1 2 3 4 5 6 7 | data(georgia, package = "spgwr")
fit.formula <- PctBach ~ TotPop90 + PctRural + PctFB + PctPov
gwer.bw.t <- bw.gwer(fit.formula, data = gSRDF, family = Student(3), adapt = TRUE)
msgwr.fit.t <- gwer.multiscale(fit.formula, family = Student(3), data = gSRDF,
bws0 = rep(gwer.bw.t, 5), hatmatrix = TRUE,
adaptive = TRUE)
gwer.multiscale.diag.plots(msgwr.fit.t, which=3)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.