Nothing
#' Absolute concentration index (ACI)
#'
#' The absolute concentration index (ACI) is an absolute measure of inequality
#' that indicates the extent to which an indicator is concentrated among
#' disadvantaged or advantaged subgroups, on an absolute scale.
#'
#' ACI can be calculated using disaggregated data and individual-level data.
#' Subgroups in disaggregated data are weighted according to their population
#' share, while individuals are weighted by sample weight in the case of data
#' from surveys.
#'
#' The calculation of ACI is based on a ranking of the whole population from
#' the most disadvantaged subgroup (at rank 0) to the most advantaged subgroup
#' (at rank 1), which is inferred from the ranking and size of the subgroups.
#' ACI can be calculated as twice the covariance between the health indicator
#' and the relative rank. Given the relationship between covariance and
#' ordinary least squares regression, ACI can be obtained from a
#' regression of a transformation of the health variable of interest on the
#' relative rank. For more information on this inequality measure see
#' Schlotheuber (2022) below.
#'
#' **Interpretation:** ACI is 0 if there is no inequality. The larger the
#' absolute value of ACI, the higher the level of inequality. Positive values
#' indicate a concentration of the indicator among advantaged subgroups, and
#' negative values indicate a concentration of the indicator among
#' disadvantaged subgroups.
#'
#' **Type of summary measure:** Complex; absolute; weighted
#'
#' **Applicability:** Ordered dimension of inequality with more than two
#' subgroups
#'
#' **Warning:** The confidence intervals are approximate and might be biased.
#'
#' @param est The indicator estimate. Estimates must be available for all
#' subgroups/individuals (unless force=TRUE).
#' @param subgroup_order The order of subgroups/individuals in an increasing
#' sequence.
#' @param pop For disaggregated data, the number of people within each subgroup.
#' This must be available for all subgroups.
#' @param weight The individual sampling weight, for individual-level data from
#' a survey. This must be available for all individuals.
#' @param psu Primary sampling unit, for individual-level data from a survey.
#' @param strata Strata, for individual-level data from a survey.
#' @param fpc Finite population correction, for individual-level data from a
#' survey where sample size is large relative to population size.
#' @param lmin Minimum limit for bounded indicators
#' (i.e., variables that have a finite upper and/or lower limit).
#' @param lmax Maximum limit for bounded indicators
#' (i.e., variables that have a finite upper and/or lower limit).
#' @param conf.level Confidence level of the interval. Default is 0.95 (95%).
#' @param force TRUE/FALSE statement to force calculation with missing
#' indicator estimate values.
#' @param ... Further arguments passed to or from other methods.
#' @examples
#' # example code
#' data(IndividualSample)
#' head(IndividualSample)
#' with(IndividualSample,
#' aci(est = sba,
#' subgroup_order = subgroup_order,
#' weight = weight,
#' psu = psu,
#' strata = strata))
#' # example code
#' data(OrderedSample)
#' head(OrderedSample)
#' with(OrderedSample,
#' aci(est = estimate,
#' subgroup_order = subgroup_order,
#' pop = population))
#' @references Schlotheuber, A, Hosseinpoor, AR. Summary measures of health
#' inequality: A review of existing measures and their application. Int J
#' Environ Res Public Health. 2022;19(6):3697. doi:10.3390/ijerph19063697.
#' @return The estimated ACI value, corresponding estimated standard error,
#' and confidence interval as a `data.frame`.
#' @importFrom stats binomial gaussian glm predict qnorm quantile rnorm vcov
#' @importFrom utils data
#' @importFrom survey svyglm svymean svyvar
#' @importFrom srvyr as_survey
#' @importFrom dplyr lag group_by select
#' @importFrom rlang .data
#' @export
#' @rdname aci
#'
aci <- function(est,
subgroup_order,
pop = NULL,
weight = NULL,
psu = NULL,
strata = NULL,
fpc = NULL,
lmin = NULL,
lmax = NULL,
conf.level = 0.95,
force = FALSE,
...) {
# Variable checks
## Stop
if (!force) {
if (anyNA(est))
stop('Estimates are missing in some subgroups.
Specify force=TRUE to allow missing values.')
} else {
pop <- pop[!is.na(est)]
subgroup_order <- subgroup_order[!is.na(est)]
if (!is.null(psu))
psu <- psu[!is.na(est)]
if (!is.null(strata))
strata <- strata[!is.na(est)]
if (!is.null(weight))
weight <- weight[!is.na(est)]
est <- est[!is.na(est)]
}
if (length(est) <= 2) {
stop('Estimates must be available for more than two subgroups')
}
if (!is.null(est)) {
if (!is.numeric(est))
stop('Estimates need to be numeric')
}
if (!is.null(pop)) {
if (anyNA(pop)) {
stop('Population is missing in some subgroups')
}
if (!is.numeric(pop)) {
stop('Population variable needs to be numeric')
}
if (all(pop == 0)) {
stop('Population variable is of size 0 in all subgroups')
}
}
if (is.null(subgroup_order)) {
stop('Subgroup order variable needs to be declared')
}
sorted_order <- sort(subgroup_order)
if (!is.null(pop) &
(any(diff(sorted_order) != 1) || any(sorted_order %% 1 != 0))) {
stop('Subgroup order variable must contain integers in increasing order')
}
if (!is.null(weight) & !is.numeric(weight)) {
stop('Weight variable needs to be numeric')
}
if (!is.null(lmin) & is.null(lmax) |
!is.null(lmax) & is.null(lmin)) {
stop(
'The minimum limit (lmin) and maximum limit (lmax) should be declared for
bounded indicators'
)
}
if (!is.null(lmin) & !is.null(lmax)) {
if (min(est) < lmin)
stop('Estimate variable has values outside of the specified limits')
if (lmin == lmax | lmin > lmax)
stop('The minimum limit (lmin) should be different and less than the
maximum limit (lmax)')
}
## Warning
if (is.null(pop) & is.null(weight)) {
message('Neither a population variable nor a weight variable has been
declared')
}
if (!is.null(lmin) & !is.null(lmax)) {
message('Bounded indicator normalisation applied')
}
# Options
options(survey.lonely.psu = "adjust")
options(survey.adjust.domain.lonely = TRUE)
# Calculate summary measure
## Create pop if NULL
if (is.null(pop) & is.null(weight)) {
pop <- rep(1, length(est))
}
if (is.null(pop) & !is.null(weight)) {
pop <- weight
}
## Rank subgroups from the most disadvantaged to the most advantaged
reorder <- order(subgroup_order)
pop <- pop[reorder]
subgroup_order <- subgroup_order[reorder]
if (!is.null(weight)) {
weight <- weight[reorder]
intercept <- 1
} else {
intercept <- sqrt(pop)
}
if (!is.null(strata))
strata <- strata[reorder]
if (!is.null(psu))
psu <- psu[reorder]
est <- est[reorder]
if (!is.null(lmin) & !is.null(lmax)) {
est <- (est - lmin) / (lmax - lmin)
}
sumw <- sum(pop, na.rm = TRUE)
cumw <- cumsum(pop)
cumw1 <- dplyr::lag(cumw)
cumw1[is.na(cumw1)] <- 0
newdat_aci <- as.data.frame(cbind(est,
pop,
psu,
strata,
weight,
subgroup_order,
sumw,
cumw,
cumw1,
intercept))
newdat_aci <- newdat_aci %>%
group_by(subgroup_order) %>%
mutate(cumwr = max(.data$cumw, na.rm = TRUE),
cumwr1 = min(.data$cumw1, na.rm = TRUE)) %>%
ungroup()
rank <- (newdat_aci$cumwr1 + 0.5 *
(newdat_aci$cumwr - newdat_aci$cumwr1)) / newdat_aci$sumw
tmp <- (newdat_aci$pop / newdat_aci$sumw) * ((rank - 0.5) ^ 2)
sigma1 <- sum(tmp)
tmp1 <- newdat_aci$pop * newdat_aci$est
meanlhs <- sum(tmp1)
meanlhs1 <- meanlhs / newdat_aci$sumw
lhs <- (sigma1 * 2 * (newdat_aci$est / meanlhs1) * newdat_aci$intercept)
lhs1 <- lhs * meanlhs1
rhs <- rank * newdat_aci$intercept
newdat_aci <- as.data.frame(cbind(newdat_aci,
lhs,
lhs1,
rhs))
## Calculate ACI
if (is.null(weight)) {
mod <- glm(lhs1 ~ 0 + rhs + intercept,
family = gaussian,
data = newdat_aci)
} else {
tids <- if (is.null(psu)) {
~ 1
} else {
~ psu
}
tstrata <- if (is.null(strata)) {
NULL
} else {
~ strata
}
tfpc <- if (is.null(fpc)) {
NULL
} else {
~ fpc
}
newdat_aci_s <- svydesign(ids = tids,
probs = NULL,
strata = tstrata,
weights = ~ weight,
fpc = tfpc,
data = newdat_aci)
mod <- svyglm(lhs1 ~ 0 + rhs + intercept,
design = newdat_aci_s,
family = gaussian)
}
aci <- mod$coefficients[[1]]
## Calculate 95% confidence intervals
se.formula <- sqrt(diag(vcov(mod)))[[1]]
cilevel <- 1 - ((1 - conf.level) / 2)
lowerci <- aci - se.formula * qnorm(cilevel)
upperci <- aci + se.formula * qnorm(cilevel)
# Return data frame
return(data.frame(measure = "aci",
estimate = aci,
se = se.formula,
lowerci = lowerci,
upperci = upperci))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.