Nothing
#' Difference (D)
#'
#' The difference (D) is an absolute measure of inequality that shows the
#' difference in an indicator between two population subgroups. For more
#' information on this inequality measure see Schlotheuber (2022) below.
#'
#' D is calculated as `D = y1 - y2`, where `y1` and `y2` indicate the
#' estimates for subgroups 1 and 2. The selection of the two subgroups depends
#' on the characteristics of the inequality dimension and the purpose of the
#' analysis. In addition, the direction of the calculation may depend on the
#' indicator type (favourable or adverse). Please see specifications of how
#' `y1` and `y2` are identified below.
#'
#' Ordered dimension:
#' Favourable indicator: Most-advantaged subgroup - Least-advantaged subgroup
#' Adverse indicator: Least-advantaged subgroup - Most-advantaged subgroup
#'
#' Non-ordered dimension:
#' No reference group & favourable indicator: Highest estimate - Lowest estimate
#' No reference group & adverse indicator: Lowest estimate - Highest estimate
#' Reference group & favourable indicator: Reference estimate - Lowest estimate
#' Reference group & adverse indicator: Lowest estimate - Reference estimate
#'
#' **Interpretation:** Greater absolute values indicate higher levels of
#' inequality. D is 0 if there is no inequality.
#'
#' **Type of summary measure:** Simple; relative; unweighted
#'
#' **Applicability:** Any dimension of inequality
#'
#' **Warning:** The confidence intervals are approximate and might be biased.
#' See Ahn et al. (2018) below for further information about the standard error
#' formula.
#'
#' @param est The subgroup estimate. Estimates must be available for the two
#' subgroups being compared.
#' @param se The standard error of the subgroup estimate. If this is missing,
#' confidence intervals of D cannot be calculated.
#' @param favourable_indicator Records whether the indicator is favourable (1)
#' or adverse (0). Favourable indicators measure desirable health events where
#' the ultimate goal is to achieve a maximum level (such as skilled birth
#' attendance). Adverse indicators measure undesirable health events where the
#' ultimate goal is to achieve a minimum level (such as under-five mortality
#' rate).
#' @param ordered_dimension Records whether the dimension is ordered (1) or
#' non-ordered (0). Ordered dimensions have subgroup with a natural order (such
#' as economic status). Non-ordered or binary dimensions do not have a natural
#' order (such as subnational region or sex).
#' @param subgroup_order The order of subgroups in an increasing sequence.
#' Required if the dimension is ordered (ordered_dimension=1).
#' @param reference_subgroup Identifies a reference subgroup with the value of
#' 1, if the dimension is non-ordered or binary.
#' @param conf.level Confidence level of the interval. Default is 0.95 (95%).
#' @param ... Further arguments passed to or from other methods.
#' @examples
#' # example code
#' data(NonorderedSample)
#' head(NonorderedSample)
#' with(NonorderedSample,
#' d(est = estimate,
#' se = se,
#' favourable_indicator = favourable_indicator,
#' ordered_dimension = ordered_dimension,
#' reference_subgroup = reference_subgroup))
#' @references Schlotheuber, A, Hosseinpoor, AR. Summary measures of health
#' inequality: A review of existing measures and their application. Int J
#' Environ Res Public Health. 2022;19(6):3697. doi:10.3390/ijerph19063697.
#' @references Ahn J, Harper S, Yu M, Feuer EJ, Liu B, Luta G. Variance
#' estimation and confidence intervals for 11 commonly used health disparity
#' measures. JCO Clin Cancer Inform. 2018;2:1-19. doi:10.1200/CCI.18.00031.
#' @return The estimated D value, corresponding estimated standard error,
#' and confidence interval as a `data.frame`.
#' @export
#'
d <- function(est,
se = NULL,
favourable_indicator,
ordered_dimension,
subgroup_order = NULL,
reference_subgroup = NULL,
conf.level = 0.95,
...) {
# Variable checks
## Stop
if (all(is.na(est))) {
stop('Estimates are missing for all subgroups')
}
if (!is.null(est)) {
if (!is.numeric(est))
stop('Estimates need to be numeric')
}
if (!all(favourable_indicator %in% c(0,1))) {
stop('Favourable indicator variable must contain 0 or 1')
}
if (length(unique(favourable_indicator)) != 1) {
stop('Favourable indicator variable must be consistent across subgroups,
for the same indicator')
}
if (!all(ordered_dimension %in% c(0,1))) {
stop('Ordered dimension variable must contain 0 or 1')
}
if (length(unique(ordered_dimension)) != 1) {
stop('Ordered dimension variable must be consistent across subgroups,
for the same indicator')
}
if (!is.null(se)) {
if (!is.numeric(se))
stop('Standard errors need to be numeric')
}
if (!is.null(ordered_dimension) & any(ordered_dimension != 0)) {
if (is.null(subgroup_order)) {
stop('Subgroup order variable needs to be declared')
}
sorted_order <- sort(subgroup_order)
if (any(diff(sorted_order) != 1) || any(sorted_order %% 1 != 0)) {
stop('Subgroup order variable must contain integers in increasing order')
}
}
if (!is.null(reference_subgroup)) {
if (sum(reference_subgroup) > 1) {
stop('Reference subgroup variable must identify one reference subgroup
with the value 1')
}
}
## Warning
if (any(is.na(se)) | is.null(se)) {
warning('Standard errors are missing in all or some subgroups, confidence
intervals will not be computed')
}
# Identify reference estimates for y1 and y2
y1_ref <- rep(0, length(est))
y2_ref <- rep(0, length(est))
if (sum(ordered_dimension, na.rm = TRUE) != 0) {
## Ordered dimension
y1_ref[((subgroup_order == min(subgroup_order, na.rm = TRUE) &
favourable_indicator[1] == 0) |
(subgroup_order == max(subgroup_order, na.rm = TRUE) &
favourable_indicator[1] == 1))] <- 1
y2_ref[((subgroup_order == max(subgroup_order, na.rm = TRUE) &
favourable_indicator[1] == 0) |
(subgroup_order == min(subgroup_order, na.rm = TRUE) &
favourable_indicator[1] == 1))] <- 1
}
if (sum(ordered_dimension, na.rm = TRUE) == 0) {
## Non-ordered dimension
if (sum(reference_subgroup, na.rm = TRUE) == 0) {
### No reference subgroup
y1_ref[which(est == max(est, na.rm = TRUE))[1]] <- 1
y2_ref[which(est == min(est, na.rm = TRUE))[1]] <- 1
} else {
### Reference subgroup
y1_ref[((reference_subgroup == 1 & favourable_indicator[1] == 1) |
(reference_subgroup != 1 & favourable_indicator[1] == 0 &
est == max(est[reference_subgroup != 1], na.rm = TRUE)))] <- 1
y2_ref[((reference_subgroup == 1 & favourable_indicator[1] == 0) |
(reference_subgroup != 1 & favourable_indicator[1] == 1 &
est == min(est[reference_subgroup != 1], na.rm = TRUE)))] <- 1
}
}
# Calculate summary measure
y1 <- est[y1_ref == 1 & !is.na(y1_ref)]
y2 <- est[y2_ref == 1 & !is.na(y2_ref)]
y1_se <- se[y1_ref == 1 & !is.na(y1_ref)]
y2_se <- se[y2_ref == 1 & !is.na(y2_ref)]
d <- y1 - y2
# Calculate 95% confidence intervals
d_se <- NA
lowerci <- NA
upperci <- NA
cilevel <- 1 - ((1 - conf.level) / 2)
if (sum(is.na(se) == 0)) {
d_se <- sqrt(y1_se^2 + y2_se^2)
lowerci <- d - d_se * qnorm(cilevel)
upperci <- d + d_se * qnorm(cilevel)
}
# Return data frame
return(data.frame(measure = "d",
estimate = d,
se = d_se,
lowerci = lowerci,
upperci = upperci))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.