Nothing
summary.blrMod <- function(object, ...) {
is_bayes <- grepl("Individual", attr(object$call, "model"))
is_sbayes <- grepl("Summary", attr(object$call, "model"))
is_ssbayes <- grepl("Single-step", attr(object$call, "model"))
res <- list()
res$call <- object$call
if(is_bayes || is_ssbayes){
coef <- matrix(NA, length(object$beta) + length(object[["J"]]) + 1, 2)
rownames(coef) <- c("(Intercept)",
if(is.null(object[["J"]])) NULL else {"J"},
names(object$beta)
)
# colnames(coef) <- c("Estimate", "Std. Error", "t value")
colnames(coef) <- c("Estimate", "SD")
coef[, 1] <- c(object$mu, object[["J"]], object$beta)
coef[, 2] <- c(apply(object$MCMCsamples$mu, 1, sd),
if(is.null(object$MCMCsamples[["J"]])) NULL else {apply(object$MCMCsamples[["J"]], 1, sd)},
if(is.null(object$MCMCsamples$beta)) NULL else {apply(object$MCMCsamples$beta, 1, sd)}
)
# coef[, 3] <- coef[, 1] / coef[, 2]
res$beta <- coef
}
envirR <- matrix(NA, length(object[["Vr"]]) + 1, 2)
rownames(envirR) <- c(names(object[["Vr"]]), "Residual")
colnames(envirR) <- c("Variance", "SD")
envirR[, 1] <- c(object[["Vr"]], object$Ve)
envirR[, 2] <- c(
if(is.null(object$MCMCsamples[["Vr"]])) NULL else {apply(object$MCMCsamples[["Vr"]], 1, sd)},
apply(object$MCMCsamples$Ve, 1, sd)
)
res$VER <- envirR
if(!is.null(object[["r"]])){
res[["r"]] <- object[["r"]]
res[["r"]]$SD <- apply(object$MCMCsamples[["r"]], 1, sd)
}
geneR <- matrix(NA, 1 + 1 + length(object$Veps) + length(object[["pi"]]), 2)
rownames(geneR) <- c("Vg", "h2",
if(is.null(object$Veps)) NULL else {paste0("V", "\U03b5")},
paste0("\U03c0",1:length(object[["pi"]]))
)
colnames(geneR) <- c("Estimate", "SD")
geneR[, 1] <- c(object$Vg, object$h2, object$Veps, object[["pi"]])
geneR[, 2] <- c(apply(object$MCMCsamples$Vg, 1, sd),
apply(object$MCMCsamples$h2, 1, sd),
if(is.null(object$MCMCsamples$Veps)) NULL else {apply(object$MCMCsamples$Veps, 1, sd)},
apply(object$MCMCsamples[["pi"]], 1, sd))
res$VGR <- geneR
if(!is.null(object[["g"]])){
res[["g"]] <- object[["g"]]
res[["g"]]$SD <- apply(object$MCMCsamples[["g"]], 1, sd)
}
res$alpha <- data.frame(Effect = object$alpha, SD = apply(object$MCMCsamples$alpha, 1, sd))
if(!is.null(object[["e"]])) res$e <- object[["e"]]
class(res) <- "summary.blrMod"
res
}
print.summary.blrMod <- function(x, ...) {
cat(attr(x$call, "model"), "\n")
cat("Formula:", x$call, "\n")
if(!is.null(x$e)){
cat("\nResiduals ($e):\n")
print(summary(x$e[, 2], digits=5)[-4])
}
digits <- max(3, getOption("digits") - 3)
if(!is.null(x$beta)){
cat("\nFixed effects ($beta):\n")
printCoefmat(x$beta, digits=digits)
}
cat("\nEnvironmental random effects ($VER, $r):\n")
printCoefmat(x$VER, digits=digits)
if(!is.null(x$e)){
cat("Number of obs:", nrow(x$e))
if(nrow(x$VER) > 1){
cat(", group: ")
cat(paste(rownames(x$VER)[-nrow(x$VER)], attr(x[["r"]], "nlevel"), sep = ", ", collapse="; "))
}
cat("\n")
}
cat("\nGenetic random effects ($VGR, $g):\n")
printCoefmat(x$VGR, digits=digits)
cat("Number of markers:", nrow(x$alpha), ", predicted individuals:", ifelse(is.null(x[["g"]]), 0, nrow(x[["g"]])), "\n")
cat("\nMarker effects ($alpha):\n")
print(summary(x$alpha[, 1], digits=6)[-4])
invisible(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.