GCT.sim: Generalized component test simulator

Description Usage Arguments Value Author(s) References See Also Examples

Description

Performs the generalized component test from Gregory et al. (2014) on multiple data sets generated by build2popData.

Usage

1
GCT.sim(DATA, r, smoother = "parzen", ntoorderminus = 2)

Arguments

DATA

an object returned by build2popData which is a list of S data sets.

r

the lag window size for variance estimation.

smoother

the lag window used in the variance estimation. Possible values are "parzen" and "trapezoid".

ntoorderminus

a value of 0,1, or 2 such that the centering constant will retain terms of order n^(-ntoorderminus). Enter 0 for the moderate-p GCT, and enter 2 for the large-p GCT. A value of 1 may be entered to retain only terms which are O(1/n), appropriate for a size of p between moderate and large.

Value

A data frame with columns

TSvalues

the values of the unstudentized test statistic.

pvalues

the p-values.

smoothtype

the choice of the lag window used in variance estimation.

T

the values of the studentized test statistic.

cent

the values of the centering constant.

var

the values of the estimated variance of the test statistic.

Author(s)

Karl Gregory kgregory@mail.uni-mannheim.de, http://www.stat.tamu.edu/~kbgregory.

References

Gregory, K., Carroll, R. J., Baladandayuthapani, V. and Lahiri, S. (2015). A two-sample test for equality of means in high dimension. Journal of the American Statistician, to appear

See Also

GCT.test

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
	
## Not run: 

DATA <-build2popData(	
	n = 15,
	m = 20,
	p = 500,
	muX = rep(0,500),
	muY = rep(0,500),
	commoncov = FALSE,
	VarScaleY = 1,
	dep = "ARMA",
	ARMAparms = list(coefs=list(ma=c(.2,.3) , ar=c(.4,-.1))),
	LRparm = .75,
	S = 25,
	innov = function(n,...) rnorm(n,0,1),
	heteroscedastic=TRUE,
	het.diag = diag(.1 + rexp(500,1/2))
	)	
	
GCT.sim(DATA,r=20,smoother="parzen")


## End(Not run)

highD2pop documentation built on May 2, 2019, 5:11 a.m.