Nothing
#' @title Longitudinal independent simulations.
#' @export
#' @family simulate
#' @description Simulate from the longitudinal independent model.
#' @return A list with the following elements:
#' * `data`: tidy long-form dataset with the patient-level data.
#' one row per patient per rep and indicator columns for the study,
#' group (e.g. treatment arm), patient ID, and rep. The `response`
#' columns is the patient response. The other columns are
#' baseline covariates. The control group is the one with
#' the `group` column equal to 1, and the current study (non-historical)
#' is the one with the maximum value of the `study` column.
#' Only the current study has any non-control-group patients,
#' the historical studies have only the control group.
#' * `parameters`: named list of model parameter values.
#' See the model specification vignette for details.
#' * `matrices`: A named list of model matrices.
#' See the model specification vignette for details.
#' @inheritParams hbl_sim_pool
#' @examples
#' hbl_sim_independent(n_continuous = 1)$data
hbl_sim_independent <- function(
n_study = 5,
n_group = 3,
n_patient = 100,
n_rep = 4,
n_continuous = 0,
n_binary = 0,
constraint = FALSE,
s_alpha = 1,
s_delta = 1,
s_beta = 1,
s_sigma = 1,
s_lambda = 1,
covariance_current = "unstructured",
covariance_historical = "unstructured",
alpha = stats::rnorm(n = n_study * n_rep, mean = 0, sd = s_alpha),
delta = stats::rnorm(
n = (n_group - 1) * (n_rep - as.integer(constraint)),
mean = 0,
sd = s_delta
),
beta = stats::rnorm(
n = n_study * (n_continuous + n_binary),
mean = 0,
sd = s_delta
),
sigma = stats::runif(n = n_study * n_rep, min = 0, max = s_sigma),
rho_current = stats::runif(n = 1, min = -1, max = 1),
rho_historical = stats::runif(n = n_study - 1, min = -1, max = 1)
) {
true(n_study, length(.) == 1, is.finite(.), is.numeric(.), . > 0)
true(n_group, length(.) == 1, is.finite(.), is.numeric(.), . > 0)
true(n_patient, length(.) == 1, is.finite(.), is.numeric(.), . > 0)
true(n_rep, length(.) == 1, is.finite(.), is.numeric(.), . > 0)
true(n_continuous, length(.) == 1, is.finite(.), is.numeric(.), . >= 0)
true(n_binary, length(.) == 1, is.finite(.), is.numeric(.), . >= 0)
true(n_study, length(.) == 1, is.finite(.), is.numeric(.), . > 0)
true(constraint, is.logical(.), length(.) == 1L, !anyNA(.))
true(s_alpha, length(.) == 1, is.finite(.), is.numeric(.), . > 0)
true(s_delta, length(.) == 1, is.finite(.), is.numeric(.), . > 0)
true(s_beta, length(.) == 1, is.finite(.), is.numeric(.), . > 0)
true(s_sigma, length(.) == 1, is.finite(.), is.numeric(.), . > 0)
true(
covariance_current,
is.character(.),
!anyNA(.),
length(.) == 1L,
. %in% c("unstructured", "ar1", "diagonal")
)
true(
covariance_historical,
is.character(.),
!anyNA(.),
length(.) == 1L,
. %in% c("unstructured", "ar1", "diagonal")
)
true(alpha, is.finite(.), length(.) == n_study * n_rep)
true(
delta,
is.finite(.),
is.numeric(.),
length(.) == (n_group - 1) * (n_rep - as.integer(constraint))
)
true(beta, (all(is.finite(.)) || !length(.)), is.numeric(.))
true(length(beta) == n_study * (n_continuous + n_binary))
true(sigma, is.finite(.), is.numeric(.), length(.) == n_study * n_rep)
true(rho_historical, all(is.finite(.)) || !length(.), is.numeric(.))
true(length(rho_historical) == n_study - 1)
data <- hbl_sim_grid(n_study, n_group, n_patient, n_rep)
x_alpha <- get_x_alpha(data, constraint = constraint)
x_delta <- get_x_delta(data, constraint = constraint)
covariates <- hbl_sim_x_beta(
data = data,
x_alpha = x_alpha,
x_delta = x_delta,
n_continuous = n_continuous,
n_binary = n_binary
)
data <- dplyr::bind_cols(data, tibble::as_tibble(covariates))
x_beta <- get_x_beta(data = data, x_alpha = x_alpha, x_delta = x_delta)
sigma <- matrix(sigma, nrow = n_study)
lambda_current <- hbl_sim_lambda(
n_matrix = 1,
n_rep = n_rep,
s_lambda = s_lambda
)
lambda_historical <- hbl_sim_lambda(
n_matrix = n_study - 1,
n_rep = n_rep,
s_lambda = s_lambda
)
data$response <- hbl_sim_response(
data = data,
covariance_current = covariance_current,
covariance_historical = covariance_historical,
x_alpha = x_alpha,
x_delta = x_delta,
x_beta = x_beta,
alpha = alpha,
delta = delta,
beta = beta,
sigma = sigma,
rho_current = rho_current,
rho_historical = rho_historical,
lambda_current = lambda_current,
lambda_historical = lambda_historical
)
hbl_warn_identifiable(
response = data$response,
x_alpha = x_alpha,
x_delta = x_delta,
x_beta = x_beta
)
parameters <- list(
alpha = alpha,
delta = delta,
beta = beta,
sigma = sigma
)
if (covariance_current == "unstructured") {
parameters$lambda_current <- lambda_current
} else if (covariance_current == "ar1") {
parameters$rho_current <- rho_current
}
if (covariance_historical == "unstructured") {
parameters$lambda_historical <- lambda_historical
} else if (covariance_historical == "ar1") {
parameters$rho_historical <- rho_historical
}
matrices <- list(
x_alpha = x_alpha,
x_delta = x_delta,
x_beta = x_beta
)
list(
data = data,
parameters = parameters,
matrices = matrices
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.