Nothing
#' Estimate Heterogeneous Treatment Effect via Random Forest
#'
#' Estimate heterogeneous treatment effect via random forest.
#' In each leaf, the treatment effect is the difference of mean outcome
#' weighted by inverse propensity scores in treatment group and
#' control group.
#' @param gf a fitted generalized random forest object
#' @param ps_linear a character representing name of a column that
#' stores linearized propensity scores.
#' @inheritParams hte_causalTree
#' @returns A list with three elements. The first one is the predicted outcome
#' for each unit. The second is an \code{causalTree} object with the tree split
#' information. The third is a \code{data.frame} summarizing the prediction
#' results.
# Function: causal forest------
#::::::::::::::::::::::::::::::::::::
# Inverse Propensity Score Weighting#
#::::::::::::::::::::::::::::::::::::
hte_forest <- function(outcomevariable,
# the name of outcome variabls we are interested in
minsize=20,
# minimum number of treated observations,
# control observations in a leaf
crossvalidation = 20,
# number of cross-validations to do
data = edurose_mediation_20181126,
# can be changed, and the defaul one defined here
# is edurose_mediation_20181126, the education dataset we are
# working on
treatment_indicator = 'compcoll25', # treatment variable
ps_indicator = 'propsc_com25', # propensity scores
ps_linear = 'propsc_com25lin',
covariates = c(linear_terms,ps_indicator),
negative = FALSE,
# can be changed, specify the expected direction
# of the treatment effects
drawplot = TRUE,
# export the graph of tree structure if true
# con.num=1,
# the number of control variables used in matching
# no_indicater="",
legend.x = 0.08,
legend.y = 0.25,
gf,
...){
if(!exists("tau.forest")){
stop("please first run grf algorithm and name is as tau.forest")
}
# delete all missing values which is required in causal tree model
# and use it as the train set in machine learning model
trainset <- data[!is.na(data[,outcomevariable]),]
# set up the formula used for constructing causal tree
# export the formula for causal tree model: Y~X
if(nchar(ps_indicator)>0){
covariates_ <- c(covariates,ps_indicator) # non-linear ps score
formula <- as.formula(paste(outcomevariable," ~ ",
paste(covariates,collapse = '+'), collapse= "+"))
covariates <- c(covariates,ps_linear) # linear ps score
}else{
formula <- as.formula(paste(outcomevariable," ~ ",
paste(covariates,collapse = '+'), collapse= "+"))
covariates <- covariates
}
# set up propensity score
if(nchar(ps_indicator)>0){
# contruct tree
tree <- causalTree(formula,
# specify the model, outcome variable ~ covariates
data = trainset, # specify the dataset to be used
treatment = trainset[,treatment_indicator],
# specify the treatment variable, must be 0/1 indicator
split.Rule = "CT",
# specify split rule; for causal tree, use "CT"
# NOTE: there are four different splitting rules,
# they are different in the cross-validation criteria used
# to determine the tree structure
# 1 - TOT
# 2 - CT
# 3 - fit
# 4 - tstats
# 5 - totD
# 6 - ctD
# 7 - fitD
# 8 - tstatsD
cv.option = "CT", # specifify cross validation method
# and there are four different methods -- tot, ct, fit, tstats
# for causal tree, use "CT"
split.Honest = T, cv.Honest = T, split.Bucket = F,
xval = crossvalidation,
# number of cross-validations to do and the default number is 20
cp = 0,
propensity = trainset[,ps_indicator],
# specify the propensity score; if is not specified, it will use sum(treatment) / nobs as the propensity score
minsize = minsize # minimum number of treated observations, control observations in a leaf
# the default minimum size is 20, according to Jennie and Yu Xie's paper (Estimating Heterogeneous Treatment Effects with Observational Data, 2012)
)}else{
tree <- causalTree(formula,
data = trainset,
treatment = trainset[,treatment_indicator],
split.Rule = "CT",
cv.option = "CT",
split.Honest = T, cv.Honest = F, split.Bucket = F,
xval = crossvalidation,
cp = 0,
minsize = minsize
)
}
# prune this tree model to avoid the overfitting issues
# get the complexity parameter (cp) to be trimmed--the least important splits
opcp <- tree$cptable[,1][which.min(tree$cptable[,4])]
# recursively snipping off the least important tree based on the complexity parameter (cp)
opfit <- rpart::prune(tree, opcp)
# matchin in leaves and return the predicted heterogeneous treatment effect
prty <- partykit::as.party(opfit)
opfit_tree <- data.tree::as.Node(prty)
hte_effect_setup <- list()
# Matching Algorithms
x_num <- 0
opfit_tree$Do(function(node){
x_num <<- x_num+1
subgroup <- (trainset%>%rownames)%in%(node$data%>%rownames)
# print(subgroup%>%sum)
x <- grf::average_treatment_effect(gf,
target.sample = "treated",
subset = subgroup)
z <- x[1]/x[2]
p = exp(-0.717*z - 0.416*(z^2))
hte_effect_setup[[x_num]] <<- cbind(x[1],p,x[2],
nrow(node$data)/nrow(trainset)*100%>%round(.,1))
# keep all related numbers in the environment of node
node$predicted <- x[1]%>%as.numeric
node$pvalue <- p
node$standarderror <- x[2]%>%as.numeric
node$samplesize <- nrow(node$data)
})
opfit_tree <-opfit_tree
hte_effect <- opfit_tree$Get("predicted")%>%as.numeric
opfit$frame$yval <- hte_effect
# create a new variable indicating the estimated treatment effect for each unit
hte_effect <- opfit$frame$yval[opfit$where]
# statistics
ttable <<- unlist(hte_effect_setup)%>%matrix(.,ncol = 4,byrow = TRUE)%>%
as.data.frame%>%
`colnames<-`(c("Estimator","pvalue","se","SampleSize"))
st <- rep("",length(ttable$pvalue))
st[ttable$pvalue<0.05] <- "*"
st[ttable$pvalue<0.01] <- "**"
st[ttable$pvalue<0.001] <- "***"
ttable$star <<- st
# ttable$star <<- ifelse(ttable$pvalue<0.1,"*","")
ttable$SampleSize <- round(ttable$SampleSize,1)
# If makeing plots, the values from the original tree should be
# adjusted to the value generated from matching methods
# adj_effect <- table(hte_effect)%>%as.data.table
# opfit$frame$yval[match(adj_effect$N,opfit$frame$n)] <- as.numeric(adj_effect$hte_effect)
# if drawplots is TRUE, make plots and export the plots
if(drawplot==TRUE){
# makeplots(opfit,gph,trainset,covariates,outcomevariable)
makeplots(negative=negative, opfit.=opfit,trainset,
covariates,outcomevariable,data.=data,ttable,
# no_indicater,
legend.x,legend.y)
}else{
message(c('Drawplot = ', drawplot))
}
# export the results:
output <- cbind(hte_effect)
output <- as.data.frame(output)
colnames(output) <- paste0(outcomevariable,"_predictedTE")
return(list(predictedTE = output, tree = opfit, matching_table = ttable))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.