iCluster2: A variant of the iCluster method with variance weighted...

Description Usage Arguments Value Author(s) References See Also Examples

Description

iCluster function with variance-weighted shrinkage (see Shen et al. PLoS ONE, 2012)

Usage

1
iCluster2(datasets, k, lambda=NULL, scale=T, scalar=F, max.iter=10, verbose=T)

Arguments

datasets

A list containing data matrices. For each data matrix, the rows represent samples, and the columns represent genomic features.

k

Number of classes for the samples.

lambda

Penalty term for the coefficient matrix of the iCluster model.

scalar

Logical value. If true, a degenerate version assuming scalar covariance matrix is used.

max.iter

maximum iteration for the EM algorithm

scale

Logical value. If true, data matrix is column centered

verbose

Logical value. If true, print message.

Value

A list with the following elements.

expZ

Latent variable matrix

W

The iCluster model coefficient matrix

PSI

The estimated covariance matrix

clusters

Cluster indicator for samples

Author(s)

Ronglai Shen shenr@mskcc.org

References

Ronglai Shen, Adam Olshen, Marc Ladanyi. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906-2912.

Ronglai Shen, Qianxing Mo, Nikolaus Schultz, Venkatraman E. Seshan, Adam B. Olshen, Jason Huse, Marc Ladanyi, Chris Sander. (2012). Integrative Subtype Discovery in Glioblastoma Using iCluster. PLoS ONE 7, e35236

See Also

tune.iCluster2, plotiCluster, compute.pod, plotHeatmap

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
library(iCluster)
library(caTools, lib.loc="/apps/Rlib64/")
library(gdata, lib.loc="/apps/Rlib64/")
library(gtools, lib.loc="/apps/Rlib64/")
library(gplots, lib.loc="/apps/Rlib64/")
library(lattice, lib.loc="/apps/Rlib64/")
data(gbm)

#setting the penalty parameter lambda=0 returns non-sparse fit
#fit=iCluster2(datasets=gbm, k=3, lambda=list(0.44,0.33,0.28))

#plotiCluster(fit=fit, label=rownames(gbm[[1]]))

#compute.pod(fit)

#data(coord)
#chr=coord[,1]
#plotHeatmap(fit=fit, data=gbm, feature.order=c(FALSE,TRUE,TRUE),
#sparse=c(FALSE,TRUE,TRUE),plot.chr=c(TRUE,FALSE,FALSE), chr=chr)

Example output

Loading required package: lattice
Loading required package: caTools
Loading required package: gdata
sh: 1: cannot create /dev/null: Permission denied
gdata: Unable to locate valid perl interpreter
gdata: 
gdata: read.xls() will be unable to read Excel XLS and XLSX files
gdata: unless the 'perl=' argument is used to specify the location of a
gdata: valid perl intrpreter.
gdata: 
gdata: (To avoid display of this message in the future, please ensure
gdata: perl is installed and available on the executable search path.)
sh: 1: cannot create /dev/null: Permission denied
gdata: Unable to load perl libaries needed by read.xls()
gdata: to support 'XLX' (Excel 97-2004) files.

gdata: Unable to load perl libaries needed by read.xls()
gdata: to support 'XLSX' (Excel 2007+) files.

gdata: Run the function 'installXLSXsupport()'
gdata: to automatically download and install the perl
gdata: libaries needed to support Excel XLS and XLSX formats.

Attaching package: 'gdata'

The following object is masked from 'package:stats':

    nobs

The following object is masked from 'package:utils':

    object.size

The following object is masked from 'package:base':

    startsWith

Loading required package: gtools
Loading required package: gplots

Attaching package: 'gplots'

The following object is masked from 'package:stats':

    lowess

Loading required package: parallel

iCluster documentation built on May 2, 2019, 11:25 a.m.

Related to iCluster2 in iCluster...