Description Usage Arguments Value Author(s) References See Also Examples
Model tuning process for choosing the number of clusters k and the lasso penalty parameters.
1 | tune.iCluster2(datasets, k, n.lambda,nrep, mc.cores,max.iter)
|
datasets |
A list containing data matrices. For each data matrix, the rows represent samples, and the columns represent genomic features. |
k |
Number of classes for the samples. |
nrep |
Number of training and test data partition for computing the reproducibility index. |
n.lambda |
The number of sampled points for the uniform design. Use the default value by setting n.lambda=NULL |
mc.cores |
Number of cores to use for parallel computation. |
max.iter |
Number of EM iterations. |
A list with the following elements.
best.fit |
Model fit under the optimal lambda values that give the highest reproducibility index. |
RI |
A vector of reproducibility index associated with each of the sampled lambda combination. |
ud |
Sampled lambda combinations under the uniform design |
Ronglai Shen shenr@mskcc.org
Ronglai Shen, Adam Olshen, Marc Ladanyi. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906-2912.
Ronglai Shen, Qianxing Mo, Nikolaus Schultz, Venkatraman E. Seshan, Adam B. Olshen, Jason Huse, Marc Ladanyi, Chris Sander. (2012). Integrative Subtype Discovery in Glioblastoma Using iCluster. PLoS ONE 7, e35236
iCluster2
,plotiCluster
, compute.pod
, plotHeatmap
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | library(iCluster)
library(caTools, lib.loc="/apps/Rlib64/")
library(gdata, lib.loc="/apps/Rlib64/")
library(gtools, lib.loc="/apps/Rlib64/")
library(gplots, lib.loc="/apps/Rlib64/")
library(lattice, lib.loc="/apps/Rlib64/")
library(parallel, lib.loc="/apps/Rlib64/")
#data(simu.datasets)
#cv.fit=alist()
#for(k in 2:5){
# cat(paste("K=",k,sep=""),'\n')
# cv.fit[[k]]=tune.iCluster2(simu.datasets, k, mc.cores=6)
#}
##Reproducibility index (RI) plot
#plotRI(cv.fit)
##Based on the RI plot, k=3 is the best solution
#best.fit=cv.fit[[3]]$best.fit
##Try different color schemes
#plotHeatmap(fit=best.fit,datasets=simu.datasets,
#sparse=c(TRUE,TRUE),col.scheme=list(bluered(256), greenred(256)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.