View source: R/ifcb_extract_classified_images.R
| ifcb_extract_classified_images | R Documentation | 
This function reads a MATLAB classified sample file (.mat) generated
by the start_classify_batch_user_training function from the ifcb-analysis repository (Sosik and Olson 2007),
extracts specified taxa images from the corresponding ROI files,
and saves each image in a specified directory.
ifcb_extract_classified_images(
  sample,
  classified_folder,
  roi_folder,
  out_folder,
  taxa = "All",
  threshold = "opt",
  overwrite = FALSE,
  scale_bar_um = NULL,
  scale_micron_factor = 1/3.4,
  scale_bar_position = "bottomright",
  scale_bar_color = "black",
  old_adc = FALSE,
  gamma = 1,
  use_python = FALSE,
  verbose = TRUE
)
sample | 
 A character string specifying the sample name.  | 
classified_folder | 
 A character string specifying the directory containing the classified files.  | 
roi_folder | 
 A character string specifying the directory containing the ROI files.  | 
out_folder | 
 A character string specifying the directory to save the extracted images.  | 
taxa | 
 A character string specifying the taxa to extract. Default is "All".  | 
threshold | 
 A character string specifying the threshold to use ("none", "opt", "adhoc"). Default is "opt".  | 
overwrite | 
 A logical value indicating whether to overwrite existing PNG files. Default is FALSE.  | 
scale_bar_um | 
 An optional numeric value specifying the length of the scale bar in micrometers. If NULL, no scale bar is added.  | 
scale_micron_factor | 
 A numeric value defining the conversion factor from micrometers to pixels. Defaults to 1/3.4.  | 
scale_bar_position | 
 A character string specifying the position of the scale bar in the image. Options are   | 
scale_bar_color | 
 A character string specifying the scale bar color. Options are   | 
old_adc | 
 A logical value indicating whether the   | 
gamma | 
 A numeric value for gamma correction applied to the image. Default is 1 (no correction). Values <1 increase contrast in dark regions, while values >1 decrease contrast.  | 
use_python | 
 Logical. If   | 
verbose | 
 A logical value indicating whether to print progress messages. Default is TRUE.  | 
If use_python = TRUE, the function tries to read the .mat file using ifcb_read_mat(), which relies on SciPy.
This approach may be faster than the default approach using R.matlab::readMat(), especially for large .mat files.
To enable this functionality, ensure Python is properly configured with the required dependencies.
You can initialize the Python environment and install necessary packages using ifcb_py_install().
If use_python = FALSE or if SciPy is not available, the function falls back to using R.matlab::readMat().
No return value, called for side effects. Extracts and saves taxa images to a directory.
Sosik, H. M. and Olson, R. J. (2007), Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol. Oceanogr: Methods 5, 204–216.
ifcb_extract_pngs ifcb_extract_annotated_images https://github.com/hsosik/ifcb-analysis
## Not run: 
# Define the parameters
sample <- "D20230311T092911_IFCB135"
classified_folder <- "path/to/classified_folder"
roi_folder <- "path/to/roi_folder"
out_folder <- "path/to/outputdir"
taxa <- "All"  # or specify a particular taxa
threshold <- "opt"  # or specify another threshold
# Extract taxa images from the classified sample
ifcb_extract_classified_images(sample, classified_folder, roi_folder, out_folder, taxa, threshold)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.