View source: R/ifcb_extract_classified_images.R
ifcb_extract_classified_images | R Documentation |
This function reads a MATLAB classified sample file (.mat) generated
by the start_classify_batch_user_training
function from the ifcb-analysis
repository (Sosik and Olson 2007),
extracts specified taxa images from the corresponding ROI files,
and saves each image in a specified directory.
ifcb_extract_classified_images(
sample,
classified_folder,
roi_folder,
out_folder,
taxa = "All",
threshold = "opt",
overwrite = FALSE,
scale_bar_um = NULL,
scale_micron_factor = 1/3.4,
scale_bar_position = "bottomright",
scale_bar_color = "black",
old_adc = FALSE,
gamma = 1,
use_python = FALSE,
verbose = TRUE
)
sample |
A character string specifying the sample name. |
classified_folder |
A character string specifying the directory containing the classified files. |
roi_folder |
A character string specifying the directory containing the ROI files. |
out_folder |
A character string specifying the directory to save the extracted images. |
taxa |
A character string specifying the taxa to extract. Default is "All". |
threshold |
A character string specifying the threshold to use ("none", "opt", "adhoc"). Default is "opt". |
overwrite |
A logical value indicating whether to overwrite existing PNG files. Default is FALSE. |
scale_bar_um |
An optional numeric value specifying the length of the scale bar in micrometers. If NULL, no scale bar is added. |
scale_micron_factor |
A numeric value defining the conversion factor from micrometers to pixels. Defaults to 1/3.4. |
scale_bar_position |
A character string specifying the position of the scale bar in the image. Options are |
scale_bar_color |
A character string specifying the scale bar color. Options are |
old_adc |
A logical value indicating whether the |
gamma |
A numeric value for gamma correction applied to the image. Default is 1 (no correction). Values <1 increase contrast in dark regions, while values >1 decrease contrast. |
use_python |
Logical. If |
verbose |
A logical value indicating whether to print progress messages. Default is TRUE. |
If use_python = TRUE
, the function tries to read the .mat
file using ifcb_read_mat()
, which relies on SciPy
.
This approach may be faster than the default approach using R.matlab::readMat()
, especially for large .mat
files.
To enable this functionality, ensure Python is properly configured with the required dependencies.
You can initialize the Python environment and install necessary packages using ifcb_py_install()
.
If use_python = FALSE
or if SciPy
is not available, the function falls back to using R.matlab::readMat()
.
No return value, called for side effects. Extracts and saves taxa images to a directory.
Sosik, H. M. and Olson, R. J. (2007), Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol. Oceanogr: Methods 5, 204–216.
ifcb_extract_pngs
ifcb_extract_annotated_images
https://github.com/hsosik/ifcb-analysis
## Not run:
# Define the parameters
sample <- "D20230311T092911_IFCB135"
classified_folder <- "path/to/classified_folder"
roi_folder <- "path/to/roi_folder"
out_folder <- "path/to/outputdir"
taxa <- "All" # or specify a particular taxa
threshold <- "opt" # or specify another threshold
# Extract taxa images from the classified sample
ifcb_extract_classified_images(sample, classified_folder, roi_folder, out_folder, taxa, threshold)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.