Nothing
## ----include=FALSE------------------------------------------------------------
knitr::opts_chunk$set(fig.width = 6, fig.height = 4.5,
message = FALSE, warning = FALSE)
options(digits = 4)
## ----load-packages, echo = FALSE----------------------------------------------
library(dplyr)
library(infer)
## ----load-gss-----------------------------------------------------------------
# load in the dataset
data(gss)
# take a look at its structure
dplyr::glimpse(gss)
## -----------------------------------------------------------------------------
x_bar <- gss %>%
specify(response = hours) %>%
calculate(stat = "mean")
## -----------------------------------------------------------------------------
x_bar <- gss %>%
observe(response = hours, stat = "mean")
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 40) %>%
generate(reps = 1000) %>%
calculate(stat = "mean")
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = x_bar, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = x_bar, direction = "two-sided")
## -----------------------------------------------------------------------------
t_bar <- gss %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 40) %>%
calculate(stat = "t")
## -----------------------------------------------------------------------------
t_bar <- gss %>%
observe(response = hours, null = "point", mu = 40, stat = "t")
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 40) %>%
generate(reps = 1000) %>%
calculate(stat = "t")
## -----------------------------------------------------------------------------
null_dist_theory <- gss %>%
specify(response = hours) %>%
assume("t")
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = t_bar, direction = "two-sided")
## -----------------------------------------------------------------------------
visualize(null_dist_theory) +
shade_p_value(obs_stat = t_bar, direction = "two-sided")
## -----------------------------------------------------------------------------
visualize(null_dist, method = "both") +
shade_p_value(obs_stat = t_bar, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = t_bar, direction = "two-sided")
## -----------------------------------------------------------------------------
gss %>%
t_test(response = hours, mu = 40)
## -----------------------------------------------------------------------------
x_tilde <- gss %>%
specify(response = age) %>%
calculate(stat = "median")
## -----------------------------------------------------------------------------
x_tilde <- gss %>%
observe(response = age, stat = "median")
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(response = age) %>%
hypothesize(null = "point", med = 40) %>%
generate(reps = 1000) %>%
calculate(stat = "median")
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = x_tilde, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = x_tilde, direction = "two-sided")
## -----------------------------------------------------------------------------
set.seed(1)
gss_paired <- gss %>%
mutate(
hours_previous = hours + 5 - rpois(nrow(.), 4.8),
diff = hours - hours_previous
)
gss_paired %>%
select(hours, hours_previous, diff)
## -----------------------------------------------------------------------------
x_tilde <- gss_paired %>%
specify(response = diff) %>%
calculate(stat = "mean")
## -----------------------------------------------------------------------------
x_tilde <- gss_paired %>%
observe(response = diff, stat = "mean")
## -----------------------------------------------------------------------------
null_dist <- gss_paired %>%
specify(response = diff) %>%
hypothesize(null = "paired independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "mean")
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = x_tilde, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = x_tilde, direction = "two-sided")
## -----------------------------------------------------------------------------
p_hat <- gss %>%
specify(response = sex, success = "female") %>%
calculate(stat = "prop")
## -----------------------------------------------------------------------------
p_hat <- gss %>%
observe(response = sex, success = "female", stat = "prop")
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(response = sex, success = "female") %>%
hypothesize(null = "point", p = .5) %>%
generate(reps = 1000) %>%
calculate(stat = "prop")
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = p_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = p_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist <- gss %>%
dplyr::mutate(is_female = (sex == "female")) %>%
specify(response = is_female, success = "TRUE") %>%
hypothesize(null = "point", p = .5) %>%
generate(reps = 1000) %>%
calculate(stat = "prop")
## -----------------------------------------------------------------------------
p_hat <- gss %>%
specify(response = sex, success = "female") %>%
hypothesize(null = "point", p = .5) %>%
calculate(stat = "z")
## -----------------------------------------------------------------------------
p_hat <- gss %>%
observe(response = sex, success = "female", null = "point", p = .5, stat = "z")
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(response = sex, success = "female") %>%
hypothesize(null = "point", p = .5) %>%
generate(reps = 1000, type = "draw") %>%
calculate(stat = "z")
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = p_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = p_hat, direction = "two-sided")
## ----prop_test_1_grp----------------------------------------------------------
prop_test(gss,
college ~ NULL,
p = .2)
## -----------------------------------------------------------------------------
d_hat <- gss %>%
specify(college ~ sex, success = "no degree") %>%
calculate(stat = "diff in props", order = c("female", "male"))
## -----------------------------------------------------------------------------
d_hat <- gss %>%
observe(college ~ sex, success = "no degree",
stat = "diff in props", order = c("female", "male"))
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(college ~ sex, success = "no degree") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000) %>%
calculate(stat = "diff in props", order = c("female", "male"))
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = d_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = d_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
r_hat <- gss %>%
specify(college ~ sex, success = "no degree") %>%
calculate(stat = "ratio of props", order = c("female", "male"))
## -----------------------------------------------------------------------------
r_hat <- gss %>%
observe(college ~ sex, success = "no degree",
stat = "ratio of props", order = c("female", "male"))
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(college ~ sex, success = "no degree") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000) %>%
calculate(stat = "ratio of props", order = c("female", "male"))
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = r_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = r_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
or_hat <- gss %>%
specify(college ~ sex, success = "no degree") %>%
calculate(stat = "odds ratio", order = c("female", "male"))
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(college ~ sex, success = "no degree") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000) %>%
calculate(stat = "odds ratio", order = c("female", "male"))
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = or_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = or_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
z_hat <- gss %>%
specify(college ~ sex, success = "no degree") %>%
hypothesize(null = "independence") %>%
calculate(stat = "z", order = c("female", "male"))
## -----------------------------------------------------------------------------
z_hat <- gss %>%
observe(college ~ sex, success = "no degree",
stat = "z", order = c("female", "male"))
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(college ~ sex, success = "no degree") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000) %>%
calculate(stat = "z", order = c("female", "male"))
## -----------------------------------------------------------------------------
null_dist_theory <- gss %>%
specify(college ~ sex, success = "no degree") %>%
assume("z")
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = z_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
visualize(null_dist_theory) +
shade_p_value(obs_stat = z_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
visualize(null_dist, method = "both") +
shade_p_value(obs_stat = z_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = z_hat, direction = "two-sided")
## ----prop_test_2_grp----------------------------------------------------------
prop_test(gss,
college ~ sex,
order = c("female", "male"))
## -----------------------------------------------------------------------------
Chisq_hat <- gss %>%
specify(response = finrela) %>%
hypothesize(null = "point",
p = c("far below average" = 1/6,
"below average" = 1/6,
"average" = 1/6,
"above average" = 1/6,
"far above average" = 1/6,
"DK" = 1/6)) %>%
calculate(stat = "Chisq")
## -----------------------------------------------------------------------------
Chisq_hat <- gss %>%
observe(response = finrela,
null = "point",
p = c("far below average" = 1/6,
"below average" = 1/6,
"average" = 1/6,
"above average" = 1/6,
"far above average" = 1/6,
"DK" = 1/6),
stat = "Chisq")
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(response = finrela) %>%
hypothesize(null = "point",
p = c("far below average" = 1/6,
"below average" = 1/6,
"average" = 1/6,
"above average" = 1/6,
"far above average" = 1/6,
"DK" = 1/6)) %>%
generate(reps = 1000, type = "draw") %>%
calculate(stat = "Chisq")
## -----------------------------------------------------------------------------
null_dist_theory <- gss %>%
specify(response = finrela) %>%
assume("Chisq")
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = Chisq_hat, direction = "greater")
## -----------------------------------------------------------------------------
visualize(null_dist_theory) +
shade_p_value(obs_stat = Chisq_hat, direction = "greater")
## -----------------------------------------------------------------------------
visualize(null_dist_theory, method = "both") +
shade_p_value(obs_stat = Chisq_hat, direction = "greater")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = Chisq_hat, direction = "greater")
## -----------------------------------------------------------------------------
chisq_test(gss,
response = finrela,
p = c("far below average" = 1/6,
"below average" = 1/6,
"average" = 1/6,
"above average" = 1/6,
"far above average" = 1/6,
"DK" = 1/6))
## -----------------------------------------------------------------------------
Chisq_hat <- gss %>%
specify(formula = finrela ~ sex) %>%
hypothesize(null = "independence") %>%
calculate(stat = "Chisq")
## -----------------------------------------------------------------------------
Chisq_hat <- gss %>%
observe(formula = finrela ~ sex, stat = "Chisq")
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(finrela ~ sex) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "Chisq")
## -----------------------------------------------------------------------------
null_dist_theory <- gss %>%
specify(finrela ~ sex) %>%
assume(distribution = "Chisq")
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = Chisq_hat, direction = "greater")
## -----------------------------------------------------------------------------
visualize(null_dist_theory) +
shade_p_value(obs_stat = Chisq_hat, direction = "greater")
## -----------------------------------------------------------------------------
visualize(null_dist, method = "both") +
shade_p_value(obs_stat = Chisq_hat, direction = "greater")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = Chisq_hat, direction = "greater")
## -----------------------------------------------------------------------------
gss %>%
chisq_test(formula = finrela ~ sex)
## -----------------------------------------------------------------------------
d_hat <- gss %>%
specify(age ~ college) %>%
calculate(stat = "diff in means", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
d_hat <- gss %>%
observe(age ~ college,
stat = "diff in means", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(age ~ college) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in means", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = d_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = d_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
t_hat <- gss %>%
specify(age ~ college) %>%
hypothesize(null = "independence") %>%
calculate(stat = "t", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
t_hat <- gss %>%
observe(age ~ college,
stat = "t", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(age ~ college) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "t", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
null_dist_theory <- gss %>%
specify(age ~ college) %>%
assume("t")
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = t_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
visualize(null_dist_theory) +
shade_p_value(obs_stat = t_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
visualize(null_dist, method = "both") +
shade_p_value(obs_stat = t_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = t_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
d_hat <- gss %>%
specify(age ~ college) %>%
calculate(stat = "diff in medians", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
d_hat <- gss %>%
observe(age ~ college,
stat = "diff in medians", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(age ~ college) %>% # alt: response = age, explanatory = season
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in medians", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = d_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = d_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
F_hat <- gss %>%
specify(age ~ partyid) %>%
calculate(stat = "F")
## -----------------------------------------------------------------------------
F_hat <- gss %>%
observe(age ~ partyid, stat = "F")
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(age ~ partyid) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "F")
## -----------------------------------------------------------------------------
null_dist_theory <- gss %>%
specify(age ~ partyid) %>%
hypothesize(null = "independence") %>%
assume(distribution = "F")
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = F_hat, direction = "greater")
## -----------------------------------------------------------------------------
visualize(null_dist_theory) +
shade_p_value(obs_stat = F_hat, direction = "greater")
## -----------------------------------------------------------------------------
visualize(null_dist, method = "both") +
shade_p_value(obs_stat = F_hat, direction = "greater")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = F_hat, direction = "greater")
## -----------------------------------------------------------------------------
slope_hat <- gss %>%
specify(hours ~ age) %>%
calculate(stat = "slope")
## -----------------------------------------------------------------------------
slope_hat <- gss %>%
observe(hours ~ age, stat = "slope")
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(hours ~ age) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "slope")
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = slope_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = slope_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
correlation_hat <- gss %>%
specify(hours ~ age) %>%
calculate(stat = "correlation")
## -----------------------------------------------------------------------------
correlation_hat <- gss %>%
observe(hours ~ age, stat = "correlation")
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(hours ~ age) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "correlation")
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = correlation_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = correlation_hat, direction = "two-sided")
## -----------------------------------------------------------------------------
obs_fit <- gss %>%
specify(hours ~ age + college) %>%
fit()
## -----------------------------------------------------------------------------
null_dist <- gss %>%
specify(hours ~ age + college) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
fit()
## -----------------------------------------------------------------------------
null_dist2 <- gss %>%
specify(hours ~ age + college) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute", variables = c(age, college)) %>%
fit()
## -----------------------------------------------------------------------------
visualize(null_dist) +
shade_p_value(obs_stat = obs_fit, direction = "two-sided")
## -----------------------------------------------------------------------------
null_dist %>%
get_p_value(obs_stat = obs_fit, direction = "two-sided")
## -----------------------------------------------------------------------------
x_bar <- gss %>%
specify(response = hours) %>%
calculate(stat = "mean")
## -----------------------------------------------------------------------------
x_bar <- gss %>%
observe(response = hours, stat = "mean")
## -----------------------------------------------------------------------------
boot_dist <- gss %>%
specify(response = hours) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "mean")
## -----------------------------------------------------------------------------
percentile_ci <- get_ci(boot_dist)
## -----------------------------------------------------------------------------
visualize(boot_dist) +
shade_confidence_interval(endpoints = percentile_ci)
## -----------------------------------------------------------------------------
standard_error_ci <- get_ci(boot_dist, type = "se", point_estimate = x_bar)
visualize(boot_dist) +
shade_confidence_interval(endpoints = standard_error_ci)
## -----------------------------------------------------------------------------
sampling_dist <- gss %>%
specify(response = hours) %>%
assume(distribution = "t")
## -----------------------------------------------------------------------------
theor_ci <- get_ci(sampling_dist, point_estimate = x_bar)
theor_ci
visualize(sampling_dist) +
shade_confidence_interval(endpoints = theor_ci)
## -----------------------------------------------------------------------------
t_hat <- gss %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 40) %>%
calculate(stat = "t")
## -----------------------------------------------------------------------------
t_hat <- gss %>%
observe(response = hours,
null = "point", mu = 40,
stat = "t")
## -----------------------------------------------------------------------------
boot_dist <- gss %>%
specify(response = hours) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "t")
## -----------------------------------------------------------------------------
percentile_ci <- get_ci(boot_dist)
## -----------------------------------------------------------------------------
visualize(boot_dist) +
shade_confidence_interval(endpoints = percentile_ci)
## -----------------------------------------------------------------------------
standard_error_ci <- boot_dist %>%
get_ci(type = "se", point_estimate = t_hat)
visualize(boot_dist) +
shade_confidence_interval(endpoints = standard_error_ci)
## -----------------------------------------------------------------------------
p_hat <- gss %>%
specify(response = sex, success = "female") %>%
calculate(stat = "prop")
## -----------------------------------------------------------------------------
p_hat <- gss %>%
observe(response = sex, success = "female", stat = "prop")
## -----------------------------------------------------------------------------
boot_dist <- gss %>%
specify(response = sex, success = "female") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop")
## -----------------------------------------------------------------------------
percentile_ci <- get_ci(boot_dist)
## -----------------------------------------------------------------------------
visualize(boot_dist) +
shade_confidence_interval(endpoints = percentile_ci)
## -----------------------------------------------------------------------------
standard_error_ci <- boot_dist %>%
get_ci(type = "se", point_estimate = p_hat)
visualize(boot_dist) +
shade_confidence_interval(endpoints = standard_error_ci)
## -----------------------------------------------------------------------------
sampling_dist <- gss %>%
specify(response = sex, success = "female") %>%
assume(distribution = "z")
## -----------------------------------------------------------------------------
theor_ci <- get_ci(sampling_dist, point_estimate = p_hat)
theor_ci
visualize(sampling_dist) +
shade_confidence_interval(endpoints = theor_ci)
## -----------------------------------------------------------------------------
d_hat <- gss %>%
specify(hours ~ college) %>%
calculate(stat = "diff in means", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
d_hat <- gss %>%
observe(hours ~ college,
stat = "diff in means", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
boot_dist <- gss %>%
specify(hours ~ college) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "diff in means", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
percentile_ci <- get_ci(boot_dist)
## -----------------------------------------------------------------------------
visualize(boot_dist) +
shade_confidence_interval(endpoints = percentile_ci)
## -----------------------------------------------------------------------------
standard_error_ci <- boot_dist %>%
get_ci(type = "se", point_estimate = d_hat)
visualize(boot_dist) +
shade_confidence_interval(endpoints = standard_error_ci)
## -----------------------------------------------------------------------------
sampling_dist <- gss %>%
specify(hours ~ college) %>%
assume(distribution = "t")
## -----------------------------------------------------------------------------
theor_ci <- get_ci(sampling_dist, point_estimate = d_hat)
theor_ci
visualize(sampling_dist) +
shade_confidence_interval(endpoints = theor_ci)
## -----------------------------------------------------------------------------
d_hat <- gss %>%
specify(hours ~ college) %>%
calculate(stat = "ratio of means", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
d_hat <- gss %>%
observe(hours ~ college,
stat = "ratio of means", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
boot_dist <- gss %>%
specify(hours ~ college) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "ratio of means", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
percentile_ci <- get_ci(boot_dist)
## -----------------------------------------------------------------------------
visualize(boot_dist) +
shade_confidence_interval(endpoints = percentile_ci)
## -----------------------------------------------------------------------------
standard_error_ci <- boot_dist %>%
get_ci(type = "se", point_estimate = d_hat)
visualize(boot_dist) +
shade_confidence_interval(endpoints = standard_error_ci)
## -----------------------------------------------------------------------------
t_hat <- gss %>%
specify(hours ~ college) %>%
calculate(stat = "t", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
t_hat <- gss %>%
observe(hours ~ college,
stat = "t", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
boot_dist <- gss %>%
specify(hours ~ college) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "t", order = c("degree", "no degree"))
## -----------------------------------------------------------------------------
percentile_ci <- get_ci(boot_dist)
## -----------------------------------------------------------------------------
visualize(boot_dist) +
shade_confidence_interval(endpoints = percentile_ci)
## -----------------------------------------------------------------------------
standard_error_ci <- boot_dist %>%
get_ci(type = "se", point_estimate = t_hat)
visualize(boot_dist) +
shade_confidence_interval(endpoints = standard_error_ci)
## -----------------------------------------------------------------------------
d_hat <- gss %>%
specify(college ~ sex, success = "degree") %>%
calculate(stat = "diff in props", order = c("female", "male"))
## -----------------------------------------------------------------------------
d_hat <- gss %>%
observe(college ~ sex, success = "degree",
stat = "diff in props", order = c("female", "male"))
## -----------------------------------------------------------------------------
boot_dist <- gss %>%
specify(college ~ sex, success = "degree") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "diff in props", order = c("female", "male"))
## -----------------------------------------------------------------------------
percentile_ci <- get_ci(boot_dist)
## -----------------------------------------------------------------------------
visualize(boot_dist) +
shade_confidence_interval(endpoints = percentile_ci)
## -----------------------------------------------------------------------------
standard_error_ci <- boot_dist %>%
get_ci(type = "se", point_estimate = d_hat)
visualize(boot_dist) +
shade_confidence_interval(endpoints = standard_error_ci)
## -----------------------------------------------------------------------------
sampling_dist <- gss %>%
specify(college ~ sex, success = "degree") %>%
assume(distribution = "z")
## -----------------------------------------------------------------------------
theor_ci <- get_ci(sampling_dist, point_estimate = d_hat)
theor_ci
visualize(sampling_dist) +
shade_confidence_interval(endpoints = theor_ci)
## -----------------------------------------------------------------------------
z_hat <- gss %>%
specify(college ~ sex, success = "degree") %>%
calculate(stat = "z", order = c("female", "male"))
## -----------------------------------------------------------------------------
z_hat <- gss %>%
observe(college ~ sex, success = "degree",
stat = "z", order = c("female", "male"))
## -----------------------------------------------------------------------------
boot_dist <- gss %>%
specify(college ~ sex, success = "degree") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "z", order = c("female", "male"))
## -----------------------------------------------------------------------------
percentile_ci <- get_ci(boot_dist)
## -----------------------------------------------------------------------------
visualize(boot_dist) +
shade_confidence_interval(endpoints = percentile_ci)
## -----------------------------------------------------------------------------
standard_error_ci <- boot_dist %>%
get_ci(type = "se", point_estimate = z_hat)
visualize(boot_dist) +
shade_confidence_interval(endpoints = standard_error_ci)
## -----------------------------------------------------------------------------
slope_hat <- gss %>%
specify(hours ~ age) %>%
calculate(stat = "slope")
## -----------------------------------------------------------------------------
slope_hat <- gss %>%
observe(hours ~ age, stat = "slope")
## -----------------------------------------------------------------------------
boot_dist <- gss %>%
specify(hours ~ age) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "slope")
## -----------------------------------------------------------------------------
percentile_ci <- get_ci(boot_dist)
## -----------------------------------------------------------------------------
visualize(boot_dist) +
shade_confidence_interval(endpoints = percentile_ci)
## -----------------------------------------------------------------------------
standard_error_ci <- boot_dist %>%
get_ci(type = "se", point_estimate = slope_hat)
visualize(boot_dist) +
shade_confidence_interval(endpoints = standard_error_ci)
## -----------------------------------------------------------------------------
correlation_hat <- gss %>%
specify(hours ~ age) %>%
calculate(stat = "correlation")
## -----------------------------------------------------------------------------
correlation_hat <- gss %>%
observe(hours ~ age, stat = "correlation")
## -----------------------------------------------------------------------------
boot_dist <- gss %>%
specify(hours ~ age) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "correlation")
## -----------------------------------------------------------------------------
percentile_ci <- get_ci(boot_dist)
## -----------------------------------------------------------------------------
visualize(boot_dist) +
shade_confidence_interval(endpoints = percentile_ci)
## -----------------------------------------------------------------------------
standard_error_ci <- boot_dist %>%
get_ci(type = "se", point_estimate = correlation_hat)
visualize(boot_dist) +
shade_confidence_interval(endpoints = standard_error_ci)
## -----------------------------------------------------------------------------
obs_fit <- gss %>%
specify(hours ~ age + college) %>%
fit()
## -----------------------------------------------------------------------------
boot_dist <- gss %>%
specify(hours ~ age + college) %>%
generate(reps = 1000, type = "bootstrap") %>%
fit()
## -----------------------------------------------------------------------------
conf_ints <-
get_confidence_interval(
boot_dist,
level = .95,
point_estimate = obs_fit
)
## -----------------------------------------------------------------------------
visualize(boot_dist) +
shade_confidence_interval(endpoints = conf_ints)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.