Nothing
test_that("LRP: General errors", {
library(keras)
library(torch)
data <- matrix(rnorm(4 * 10), nrow = 10)
model <- keras_model_sequential()
model %>%
layer_dense(units = 16, activation = "relu", input_shape = c(4)) %>%
layer_dense(units = 8, activation = "relu") %>%
layer_dense(units = 3, activation = "softmax")
converter <- Converter$new(model)
expect_error(LRP$new(model, data))
expect_error(LRP$new(converter, model))
expect_error(LRP$new(converter, data, channels_first = NULL))
expect_error(LRP$new(converter, data, rule_name = "asdf"))
expect_error(LRP$new(converter, data, rule_param = "asdf"))
expect_error(LRP$new(converter, data, dtype = NULL))
})
test_that("LRP: Plot and Boxplot", {
library(neuralnet)
library(torch)
data(iris)
data <- iris[sample.int(150, size = 10), -5]
nn <- neuralnet(Species ~ .,
iris,
linear.output = FALSE,
hidden = c(10, 8), act.fct = "tanh", rep = 1, threshold = 0.5
)
# create an converter for this model
converter <- Converter$new(nn)
# Rescale Rule
lrp <- LRP$new(converter, data, dtype = "double",
)
# ggplot2
# Non-existing data points
expect_error(plot(lrp, data_idx = c(1,11)))
expect_error(boxplot(lrp, data_idx = 1:11))
# Non-existing class
expect_error(plot(lrp, output_idx = c(5)))
expect_error(boxplot(lrp, output_idx = c(5)))
p <- plot(lrp)
boxp <- boxplot(lrp)
expect_s4_class(p, "innsight_ggplot2")
expect_s4_class(boxp, "innsight_ggplot2")
p <- plot(lrp, data_idx = 1:3)
boxp <- boxplot(lrp, data_idx = 1:4)
expect_s4_class(p, "innsight_ggplot2")
expect_s4_class(boxp, "innsight_ggplot2")
p <- plot(lrp, data_idx = 1:3, output_idx = 1:3)
boxp <- boxplot(lrp, data_idx = 1:5, output_idx = 1:3)
expect_s4_class(p, "innsight_ggplot2")
expect_s4_class(boxp, "innsight_ggplot2")
# plotly
library(plotly)
p <- plot(lrp, as_plotly = TRUE)
boxp <- boxplot(lrp, as_plotly = TRUE)
expect_s4_class(p, "innsight_plotly")
expect_s4_class(boxp, "innsight_plotly")
p <- plot(lrp, data_idx = 1:3, as_plotly = TRUE)
boxp <- boxplot(lrp, data_idx = 1:4, as_plotly = TRUE)
expect_s4_class(p, "innsight_plotly")
expect_s4_class(boxp, "innsight_plotly")
p <- plot(lrp, data_idx = 1:3, output_idx = 1:3, as_plotly = TRUE)
boxp <- boxplot(lrp, data_idx = 1:5, output_idx = 1:3, as_plotly = TRUE)
expect_s4_class(p, "innsight_plotly")
expect_s4_class(boxp, "innsight_plotly")
})
test_that("LRP: Dense-Net (Neuralnet)", {
library(neuralnet)
library(torch)
data(iris)
data <- iris[sample.int(150, size = 10), -5]
nn <- neuralnet(Species ~ .,
iris,
linear.output = FALSE,
hidden = c(10, 8), act.fct = "tanh", rep = 1, threshold = 0.5
)
# create an converter for this model
converter <- Converter$new(nn)
expect_error(LRP$new(converter, array(rnorm(4 * 2 * 3), dim = c(2, 3, 4))))
# Simple Rule
lrp_simple <- LRP$new(converter, data)
expect_equal(dim(lrp_simple$get_result()), c(10, 4, 3))
expect_true(
lrp_simple$get_result(type = "torch.tensor")$dtype == torch_float()
)
# Epsilon Rule
lrp_eps_default <-
LRP$new(converter, data, rule_name = "epsilon", dtype = "double")
expect_equal(dim(lrp_eps_default$get_result()), c(10, 4, 3))
expect_true(
lrp_eps_default$get_result(type = "torch.tensor")$dtype == torch_double()
)
lrp_eps_1 <- LRP$new(converter, data,
rule_name = "epsilon",
rule_param = 1,
ignore_last_act = FALSE
)
expect_equal(dim(lrp_eps_1$get_result()), c(10, 4, 3))
expect_true(
lrp_eps_1$get_result(type = "torch.tensor")$dtype == torch_float()
)
# Alpha-Beta Rule
lrp_ab_default <- LRP$new(converter, data,
rule_name = "epsilon",
dtype = "double",
ignore_last_act = FALSE
)
expect_equal(dim(lrp_ab_default$get_result()), c(10, 4, 3))
expect_true(
lrp_ab_default$get_result(type = "torch.tensor")$dtype == torch_double()
)
lrp_ab_2 <- LRP$new(converter, data, rule_name = "epsilon", rule_param = 2)
expect_equal(dim(lrp_ab_2$get_result()), c(10, 4, 3))
expect_true(
lrp_ab_2$get_result(type = "torch.tensor")$dtype == torch_float()
)
})
test_that("LRP: Dense-Net (keras)", {
library(keras)
library(torch)
data <- matrix(rnorm(4 * 10), nrow = 10)
model <- keras_model_sequential()
model %>%
layer_dense(units = 16, activation = "relu", input_shape = c(4)) %>%
layer_dense(units = 8, activation = "tanh") %>%
layer_dense(units = 3, activation = "softmax")
converter <- Converter$new(model)
expect_error(LRP$new(converter, array(rnorm(4 * 2 * 3), dim = c(2, 3, 4))))
# Simple Rule
lrp_simple <- LRP$new(converter, data)
expect_equal(dim(lrp_simple$get_result()), c(10, 4, 3))
expect_true(
lrp_simple$get_result(type = "torch.tensor")$dtype == torch_float()
)
# Epsilon Rule
lrp_eps_default <-
LRP$new(converter, data, rule_name = "epsilon", dtype = "double")
expect_equal(dim(lrp_eps_default$get_result()), c(10, 4, 3))
expect_true(
lrp_eps_default$get_result(type = "torch.tensor")$dtype == torch_double()
)
lrp_eps_1 <- LRP$new(converter, data,
rule_name = "epsilon",
rule_param = 1,
ignore_last_act = FALSE
)
expect_equal(dim(lrp_eps_1$get_result()), c(10, 4, 3))
expect_true(
lrp_eps_1$get_result(type = "torch.tensor")$dtype == torch_float()
)
# Alpha-Beta Rule
lrp_ab_default <- LRP$new(converter, data,
rule_name = "epsilon",
dtype = "double",
ignore_last_act = FALSE
)
expect_equal(dim(lrp_ab_default$get_result()), c(10, 4, 3))
expect_true(
lrp_ab_default$get_result(type = "torch.tensor")$dtype == torch_double()
)
lrp_ab_2 <- LRP$new(converter, data, rule_name = "epsilon", rule_param = 2)
expect_equal(dim(lrp_ab_2$get_result()), c(10, 4, 3))
expect_true(
lrp_ab_2$get_result(type = "torch.tensor")$dtype == torch_float()
)
})
test_that("LRP: Conv1D-Net", {
library(keras)
library(torch)
data <- array(rnorm(4 * 64 * 3), dim = c(4, 64, 3))
model <- keras_model_sequential()
model %>%
layer_conv_1d(
input_shape = c(64, 3), kernel_size = 16, filters = 8,
activation = "softplus"
) %>%
layer_conv_1d(kernel_size = 16, filters = 4, activation = "tanh") %>%
layer_conv_1d(kernel_size = 16, filters = 2, activation = "relu") %>%
layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")
# test non-fitted model
converter <- Converter$new(model)
expect_error(LRP$new(converter, array(rnorm(4 * 2 * 3), dim = c(2, 3, 4))))
# Simple Rule
lrp_simple <- LRP$new(converter, data, channels_first = FALSE)
expect_equal(dim(lrp_simple$get_result()), c(4, 64, 3, 1))
expect_true(
lrp_simple$get_result(type = "torch.tensor")$dtype == torch_float()
)
# Epsilon Rule
lrp_eps_default <- LRP$new(converter, data,
rule_name = "epsilon",
dtype = "double", channels_first = FALSE
)
expect_equal(dim(lrp_eps_default$get_result()), c(4, 64, 3, 1))
expect_true(
lrp_eps_default$get_result(type = "torch.tensor")$dtype == torch_double()
)
lrp_eps_1 <- LRP$new(converter, data,
rule_name = "epsilon",
rule_param = 1,
channels_first = FALSE,
ignore_last_act = FALSE
)
expect_equal(dim(lrp_eps_1$get_result()), c(4, 64, 3, 1))
expect_true(
lrp_eps_1$get_result(type = "torch.tensor")$dtype == torch_float()
)
# Alpha-Beta Rule
lrp_ab_default <- LRP$new(converter, data,
rule_name = "epsilon",
dtype = "double",
channels_first = FALSE,
ignore_last_act = FALSE
)
expect_equal(dim(lrp_ab_default$get_result()), c(4, 64, 3, 1))
expect_true(
lrp_ab_default$get_result(type = "torch.tensor")$dtype == torch_double()
)
lrp_ab_2 <- LRP$new(converter, data,
rule_name = "epsilon",
rule_param = 2,
channels_first = FALSE
)
expect_equal(dim(lrp_ab_2$get_result()), c(4, 64, 3, 1))
expect_true(
lrp_ab_2$get_result(type = "torch.tensor")$dtype == torch_float()
)
# Different rules
lrp_mixed_rules <- LRP$new(converter, data,
rule_name = list(Dense_Layer = "alpha_beta"),
rule_param = list(Dense_Layer = 2),
channels_first = FALSE)
expect_equal(dim(lrp_mixed_rules$get_result()), c(4, 64, 3, 1))
lrp_mixed_rules <- LRP$new(converter, data,
rule_name = list(Dense_Layer = "alpha_beta",
Conv1D_Layer = "epsilon"),
rule_param = list(Dense_Layer = 2),
channels_first = FALSE)
expect_equal(dim(lrp_mixed_rules$get_result()), c(4, 64, 3, 1))
expect_error(LRP$new(converter, data,
rule_name = list(Flatten = "alpha_beta",
Conv1D_Layer = "epsilon"),
rule_param = list(Dense_Layer = 2),
channels_first = FALSE))
})
test_that("LRP: Conv2D-Net", {
library(keras)
library(torch)
data <- array(rnorm(4 * 32 * 32 * 3), dim = c(4, 32, 32, 3))
model <- keras_model_sequential()
model %>%
layer_conv_2d(
input_shape = c(32, 32, 3), kernel_size = 8, filters = 8,
activation = "softplus", padding = "same"
) %>%
layer_conv_2d(
kernel_size = 8, filters = 4, activation = "tanh",
padding = "same"
) %>%
layer_conv_2d(
kernel_size = 4, filters = 2, activation = "relu",
padding = "same"
) %>%
layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 2, activation = "sigmoid")
# test non-fitted model
converter <- Converter$new(model)
expect_error(LRP$new(converter,
array(rnorm(4 * 32 * 31, 3), dim = c(4, 32, 31, 3)),
channels_first = FALSE
))
# Simple Rule
lrp_simple <-
LRP$new(converter, data, channels_first = FALSE, ignore_last_act = FALSE)
expect_equal(dim(lrp_simple$get_result()), c(4, 32, 32, 3, 2))
expect_true(
lrp_simple$get_result(type = "torch.tensor")$dtype == torch_float()
)
# Epsilon Rule
lrp_eps_default <- LRP$new(converter, data,
rule_name = "epsilon",
dtype = "double",
channels_first = FALSE
)
expect_equal(dim(lrp_eps_default$get_result()), c(4, 32, 32, 3, 2))
expect_true(
lrp_eps_default$get_result(type = "torch.tensor")$dtype == torch_double()
)
lrp_eps_1 <- LRP$new(converter, data,
rule_name = "epsilon",
rule_param = 1,
channels_first = FALSE,
ignore_last_act = FALSE
)
expect_equal(dim(lrp_eps_1$get_result()), c(4, 32, 32, 3, 2))
expect_true(
lrp_eps_1$get_result(type = "torch.tensor")$dtype == torch_float()
)
# Alpha-Beta Rule
lrp_ab_default <- LRP$new(converter, data,
rule_name = "epsilon",
dtype = "double",
channels_first = FALSE,
ignore_last_act = FALSE
)
expect_equal(dim(lrp_ab_default$get_result()), c(4, 32, 32, 3, 2))
expect_true(
lrp_ab_default$get_result(type = "torch.tensor")$dtype == torch_double()
)
lrp_ab_2 <- LRP$new(converter, data,
rule_name = "epsilon",
rule_param = 2,
channels_first = FALSE
)
expect_equal(dim(lrp_ab_2$get_result()), c(4, 32, 32, 3, 2))
expect_true(
lrp_ab_2$get_result(type = "torch.tensor")$dtype == torch_float()
)
})
test_that("LRP: Keras model with two inputs + two outputs", {
library(keras)
main_input <- layer_input(shape = c(10,10,2), name = 'main_input')
lstm_out <- main_input %>%
layer_conv_2d(2, c(2,2)) %>%
layer_flatten() %>%
layer_dense(units = 4)
auxiliary_input <- layer_input(shape = c(5), name = 'aux_input')
auxiliary_output <- layer_concatenate(c(lstm_out, auxiliary_input)) %>%
layer_dense(units = 2, activation = 'softmax', name = 'aux_output')
main_output <- layer_concatenate(c(lstm_out, auxiliary_input)) %>%
layer_dense(units = 5, activation = 'tanh') %>%
layer_dense(units = 4, activation = 'tanh') %>%
layer_dense(units = 2, activation = 'tanh') %>%
layer_dense(units = 3, activation = 'softmax', name = 'main_output')
model <- keras_model(
inputs = c(auxiliary_input, main_input),
outputs = c(auxiliary_output, main_output)
)
converter <- Converter$new(model)
data <- lapply(list(c(5), c(10,10,2)),
function(x) array(rnorm(10 * prod(x)), dim = c(10, x)))
lrp <- LRP$new(converter, data, channels_first = FALSE,
output_idx = list(c(2), c(1,3)))
result <- lrp$get_result()
expect_equal(length(result), 2)
expect_equal(length(result[[1]]), 2)
expect_equal(dim(result[[1]][[1]]), c(10,5,1))
expect_equal(dim(result[[1]][[2]]), c(10,10,10,2,1))
expect_equal(length(result[[2]]), 2)
expect_equal(dim(result[[2]][[1]]), c(10,5,2))
expect_equal(dim(result[[2]][[2]]), c(10,10,10,2,2))
lrp_eps <- LRP$new(converter, data, channels_first = FALSE, rule_name = "epsilon",
output_idx = list(c(1), c(1,2)))
result <- lrp_eps$get_result()
expect_equal(length(result), 2)
expect_equal(length(result[[1]]), 2)
expect_equal(dim(result[[1]][[1]]), c(10,5,1))
expect_equal(dim(result[[1]][[2]]), c(10,10,10,2,1))
expect_equal(length(result[[2]]), 2)
expect_equal(dim(result[[2]][[1]]), c(10,5,2))
expect_equal(dim(result[[2]][[2]]), c(10,10,10,2,2))
lrp_ab <- LRP$new(converter, data, channels_first = FALSE, rule_name = "alpha_beta",
rule_param = 0.5, output_idx = list(c(2), c(2, 3)))
result <- lrp_ab$get_result()
expect_equal(length(result), 2)
expect_equal(length(result[[1]]), 2)
expect_equal(dim(result[[1]][[1]]), c(10,5,1))
expect_equal(dim(result[[1]][[2]]), c(10,10,10,2,1))
expect_equal(length(result[[2]]), 2)
expect_equal(dim(result[[2]][[1]]), c(10,5,2))
expect_equal(dim(result[[2]][[2]]), c(10,10,10,2,2))
})
test_that("LRP: Correctness (CNN)", {
library(keras)
library(torch)
data <- torch_tensor(array(rnorm(10 * 32 * 32 * 3), dim = c(10, 32, 32, 3)) * 5,
dtype = torch_double())
model <- keras_model_sequential()
model %>%
layer_conv_2d(
input_shape = c(32, 32, 3), kernel_size = 8, filters = 8,
activation = "softplus",
padding = "valid", use_bias = FALSE
) %>%
layer_conv_2d(
kernel_size = 8, filters = 4, activation = "tanh",
padding = "valid", use_bias = FALSE
) %>%
layer_conv_2d(
kernel_size = 4, filters = 2, activation = "relu",
padding = "valid", use_bias = FALSE
) %>%
layer_flatten() %>%
layer_dense(units = 64, activation = "relu", use_bias = FALSE) %>%
layer_dense(units = 16, activation = "relu", use_bias = FALSE) %>%
layer_dense(units = 1, activation = "sigmoid", use_bias = FALSE)
# test non-fitted model
converter <- Converter$new(model, dtype = "double")
lrp <- LRP$new(converter, data, channels_first = FALSE, dtype = "double")
res <- converter$model(data, channels_first = FALSE, save_last_layer = TRUE)
out <- converter$model$modules_list[[7]]$preactivation
lrp_result_sum <-
lrp$get_result(type = "torch.tensor")$sum(dim = c(2, 3, 4))
expect_lt(as.array(mean(abs(lrp_result_sum - out)^2)), 1e-10)
lrp <-
LRP$new(converter, data, channels_first = FALSE, ignore_last_act = FALSE,
dtype = "double")
res <- converter$model(data, channels_first = FALSE, save_last_layer = TRUE)
out <- converter$model$modules_list[[7]]$output - 0.5
lrp_result_no_last_act_sum <-
lrp$get_result(type = "torch.tensor")$sum(dim = c(2, 3, 4))
expect_lt(as.array(mean(abs(lrp_result_no_last_act_sum - out)^2)), 1e-10)
})
test_that("LRP: Correctness (mixed model with add layer)", {
library(keras)
library(torch)
data <- lapply(list(c(12,15,3), c(20), c(10)),
function(x) torch_randn(c(10,x), dtype = torch_double()))
input_1 <- layer_input(shape = c(12,15,3))
part_1 <- input_1 %>%
layer_conv_2d(3, c(4,4), activation = "relu", use_bias = FALSE) %>%
layer_conv_2d(2, c(3,3), activation = "relu", use_bias = FALSE) %>%
layer_flatten() %>%
layer_dense(12, activation = "relu", use_bias = FALSE)
input_2 <- layer_input(shape = c(10))
part_2 <- input_2 %>%
layer_dense(12, activation = "relu", use_bias = FALSE)
input_3 <- layer_input(shape = c(20))
part_3 <- input_3 %>%
layer_dense(12, activation = "relu", use_bias = FALSE)
output <- layer_add(c(part_1, part_3, part_2)) %>%
layer_dense(10, activation = "relu", use_bias = FALSE) %>%
layer_dense(1, activation = "linear", use_bias = FALSE)
model <- keras_model(
inputs = c(input_1, input_3, input_2),
outputs = output
)
conv <- Converter$new(model)
lrp <- LRP$new(conv, data, channels_first = FALSE, dtype = "double")
res_total_true <- as.array(model(lapply(data, as.array)))
res <- lrp$result[[1]]
res_total <- as.array(
res[[1]]$sum(c(2,3,4,5)) + res[[2]]$sum(c(2,3)) + res[[3]]$sum(c(2,3)))
expect_lt(mean((res_total - res_total_true)^2), 1e-12)
})
test_that("LRP: Correctness (mixed model with concat layer)", {
library(keras)
library(torch)
data <- lapply(list(c(12,15,3), c(20), c(10)),
function(x) torch_randn(c(10,x)))
input_1 <- layer_input(shape = c(12,15,3))
part_1 <- input_1 %>%
layer_conv_2d(3, c(4,4), activation = "relu", use_bias = FALSE) %>%
layer_conv_2d(2, c(3,3), activation = "relu", use_bias = FALSE) %>%
layer_flatten() %>%
layer_dense(20, activation = "relu", use_bias = FALSE)
input_2 <- layer_input(shape = c(10))
part_2 <- input_2 %>%
layer_dense(50, activation = "tanh", use_bias = FALSE)
input_3 <- layer_input(shape = c(20))
part_3 <- input_3 %>%
layer_dense(40, activation = "relu", use_bias = FALSE)
output <- layer_concatenate(c(part_1, part_3, part_2)) %>%
layer_dense(100, activation = "relu", use_bias = FALSE) %>%
layer_dense(1, activation = "linear", use_bias = FALSE)
model <- keras_model(
inputs = c(input_1, input_3, input_2),
outputs = output
)
conv <- Converter$new(model)
lrp <- LRP$new(conv, data, channels_first = FALSE)
res_total_true <- as.array(model(lapply(data, as.array)))
res <- lrp$result[[1]]
res_total <- as.array(
res[[1]]$sum(c(2,3,4,5)) + res[[2]]$sum(c(2,3)) + res[[3]]$sum(c(2,3)))
expect_lt(mean((res_total - res_total_true)^2), 1e-10)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.