simKKDKS | R Documentation |
SFS similarity measure values using simKKDKS computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.
simKKDKS(ma, na, mb, nb, ia, ib, k)
ma |
SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function |
na |
SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function |
mb |
SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function |
nb |
SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function |
ia |
SFS indeterminacy membership values for the data set x |
ib |
SFS indeterminacy membership values for the data set y |
k |
A constant value, considered as 1 |
The SFS similarity values of data set y with data set x
M. J. Khan, P. Kumam, W. Deebani,W. Kumam, and Z. Shah. Distance and similarity measures for spherical fuzzy sets and their applications in selecting mega projects. Mathematics, 8(4):519, 2020.
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4) y<-matrix(c(11,21,6),nrow=1) a<-mn(x) b<-std(x) a1<-mn(y) b1<-std(y) lam<-0.5 ma<-memG(a,b,x) na<-nonmemS(ma,lam) ia<-imemSFS(ma,na) mb<-memG(a1,b1,y) nb<-nonmemS(mb,lam) ib<-imemSFS(mb,nb) k<-1 simKKDKS(ma,na,mb,nb,ia,ib,k) #[1] 0.5726216 0.3223250 0.2791418 0.2791418
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.